100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Все ли объекты Вселенной состоят из атомов?

Вселенная — атом: возможно ли?

Считается, что границы наблюдения человека в космосе сейчас составляют примерно 93 миллиарда световых лет. Оставшиеся же масштабы вселенной нашему разуму пока не удается ни осознать, ни изучить. Тем не менее многие деятели науки сегодня считают, что наша галактика и прочие существующие в космосе тела помещаются лишь в пределы одного атома. Давайте разбираться, возможно ли это.

Согласно имеющимся у ученых сведениям, недоступные нашему взору просторы вселенной составляют в диаметре 20 триллионов световых лет, при этом подавляющую часть этого пространства занимают пустоты. Однако и они, и другие космические тела состоят из мельчайших частиц – атомов. Именно эти частицы являют собой материю, из которой соткано все наше мироздание: и огромные далекие планеты, и наша атмосфера, и мы – люди.

Атомы настолько малы, что даже самые современные микроскопы не позволяют сделать их подробный и четкий снимок, поэтому с уверенностью утверждать, что мы знаем о них все, было бы неправильно. На сегодняшний день мы не можем со стопроцентной точностью сказать, как выглядят эти частицы: воссоздание их наиболее полного образа происходит согласно всевозможным теоретическим данным. Впрочем, кое-что об атоме мы все-таки знаем: он состоит из еще более мелких частиц, таких как протоны, нейтроны, кварки и электроны. Также известно, что организм отдельно взятого взрослого представителя человечества состоит из порядка 7 октиллионов атомов.

В 1911 году Эрнест Резерфорд впервые обнародовал свою «Планетарную модель атома», созданную им на основании результатов эксперимента Гейгера и Марсдена по рассеиванию альфа-частиц в тонкой золотой фольге. Этот знаменитый британский физик представил строение атома как положительно заряженное ядро, сосредоточившее в себе почти всю массу частицы, вокруг которого вращаются электроны. Согласитесь, весьма похоже на устройство нашей солнечной системы. Именно эта структура заставила ученых впервые задуматься над теорией микро-вселенной.

Чтобы эта теория не казалась вам слишком уж фантастичной, следует задуматься о том, насколько относительны размеры любого существующего в мире объекта. К примеру, муравьи и другие насекомые кажутся нам нереально маленькими. А что же они думают о нас? Понимают ли, что живут в мире гигантов? Вероятнее всего, нет, ведь наш мир не пропорционален их размерам. Возможно, что их разум даже неспособен осознать людей как живых существ, каким-либо образом оказывающих влияние на их существование.

То же самое и с нами: по сравнению со многими другими космическими объектами, к примеру, галактиками, наш мир не просто крошечный – он незаметен. Отсюда напрашивается вывод: предположение, что наша реальность находится на субатомном уровне какой-либо иной вселенной, существующей на уровне атомов, вполне логично. Еще один аргумент данной теории звучит следующим образом: абсолютно все объекты в мире, будь то один из этих космических гигантов или еда, находящаяся в вашей тарелке, состоят из одного и того же «строительного материала».

Если верить, что вселенная – всего лишь атом другого мира, вполне возможно, что астрономы, биологи и физики, изучающие, казалось бы, разные сферы науки, занимаются на самом деле одним делом: один, наблюдая в телескоп скопления галактик, оставшиеся – задумываясь над строением живой клетки и атома. Кто знает, возможно, руководствуясь этим подходом, мы сможем лучше понять мир, в котором живем, и даже защититься от реальных космических угроз.

Сколько атомов во Вселенной?

Не секрет, что вселенная — чрезвычайно обширное место. То, что мы можем наблюдать (известное как «известная вселенная»), оценивается примерно в 93 миллиарда световых лет. Это довольно внушительное число, особенно если учесть, что это только то, что мы наблюдали до сих пор. И учитывая огромный объем этого пространства, можно было бы ожидать, что количество вещества, содержащегося в нем, будет столь же впечатляющим.

Но что интересно, именно когда вы смотрите на этот вопрос в самых маленьких масштабах, цифры становятся самыми ошеломляющими. Например, считается, что в нашей наблюдаемой вселенной существует от 120 до 300 секстиллионов (то есть от 1,2 x 10 2 до 3,0 x 10 2) звезд. Но при ближайшем рассмотрении в атомном масштабе цифры становятся еще более немыслимыми.

Читайте так же:
Полярная ночь – интересные факты, описание, фото и видео

На этом уровне считается, что в известной наблюдаемой вселенной существует от 10 78 до 10 82 атомов. С точки зрения непрофессионала, это получается между десятью квадриллионными атомами вининтиллиона.

И тем не менее, эти цифры не совсем точно отражают, сколько материи действительно может вместить вселенная. Как уже говорилось, эта оценка учитывает только наблюдаемую вселенную, которая достигает 46 миллиардов световых лет в любом направлении, и основана на том, где расширение пространства охватило самые отдаленные наблюдаемые объекты.

История Вселенной начинается с Большого взрыва.

Немецкий суперкомпьютер провел симуляцию и оценил, что в пределах диапазона наблюдения существует около 500 миллиардов галактик, более консервативная оценка оценивает их в 300 миллиардов. Поскольку число звезд в галактике может доходить до 400 миллиардов, то общее число звезд вполне может быть около 1,2 × 10 23 — или чуть более 100 секстиллионов.

В среднем каждая звезда может весить около 10 35 грамм. Таким образом, общая масса будет около 10 58 граммов (это 1,0 x 10 52 метрических тонн). Поскольку известно, что на каждый грамм вещества приходится около 10 24 протонов или примерно одинаковое количество атомов водорода (поскольку один атом водорода имеет только один протон), то общее число атомов водорода будет примерно 10 86 — иначе. сто тысяч квадриллионов вигинтиллионов.

В пределах этой наблюдаемой вселенной это вещество равномерно распространяется по всему пространству, по крайней мере, при усреднении по расстояниям, превышающим 300 миллионов световых лет. В меньших масштабах, однако, наблюдается образование материи в пучки иерархически организованной светящейся материи, с которой мы все знакомы.

Короче говоря, большинство атомов сконденсировано в звезды, большинство звезд сконденсировано в галактики, большинство галактик — в скопления, большинство скоплений — в сверхскопления и, наконец, в структуры самого большого масштаба, такие как Великая стена галактик (или Великая стена Слоана ), В меньшем масштабе эти скопления пронизаны облаками пылевых частиц, газовыми облаками, астероидами и другими небольшими скоплениями звездного вещества.

Представление временной шкалы Вселенной за 13,7 миллиардов лет и последующего расширения Вселенной. Предоставлено: НАСА / Научная команда WMAP.

Наблюдаемое вещество Вселенной также распространяется изотропно; Это означает, что ни одно направление наблюдения не отличается от любого другого, и каждая область неба имеет примерно одинаковое содержание. Вселенная также омывается волной высокоизотропного микроволнового излучения, которое соответствует тепловому равновесию примерно 2,725 Кельвина (чуть выше абсолютного нуля).

Гипотеза о том, что крупномасштабная вселенная однородна и изотропна, известна как космологический принцип. Это говорит о том, что физические законы действуют равномерно по всей вселенной и, следовательно, не должны приводить к заметным нарушениям в крупномасштабной структуре. Эта теория была подкреплена астрономическими наблюдениями, которые помогли наметить эволюцию структуры вселенной, так как она была первоначально заложена Большим взрывом.

Текущий консенсус среди ученых состоит в том, что подавляющее большинство материи было создано в этом событии, и что расширение Вселенной с тех пор не добавило новую материю в уравнение. Скорее, считается, что то, что происходило в течение последних 13,7 миллиардов лет, было просто расширением или рассеянием первоначально созданных масс. То есть, во время этого расширения не было добавлено никакого количества вещества, которого не было в начале.

Однако эквивалентность массы и энергии Эйнштейном представляет небольшое усложнение этой теории. Это является следствием специальной теории относительности , в которой добавление энергии к объекту увеличивает его массу постепенно. Между всеми слиянием и делением атомы регулярно превращаются из частиц в энергии и обратно.

Плотность атомов больше слева (начало эксперимента), чем 80 миллисекунд после симулированного Большого взрыва. Предоставлено: Чен-Лунг Хунг.

Тем не менее в больших масштабах общая плотность вещества во Вселенной остается неизменной во времени. Присутствует плотность наблюдаемой Вселенной оценивается как очень низкая — примерно 9,9 × 10- 30 грамм на кубический сантиметр. Эта массовая энергия состоит из 68,3% темной энергии, 26,8% темной материи и только 4,9% обычной (светящейся) материи. Таким образом, плотность атомов составляет порядка одного атома водорода на каждые четыре кубических метра объема.

Читайте так же:
Как сделать украшение из лаванды и эпоксидного клея

Свойства темной энергии и темной материи в значительной степени неизвестны и могут быть равномерно распределены или организованы в сгустки, подобные нормальной материи. Тем не менее считается, что темная материя тяготеет, как обычная материя, и, таким образом, работает, чтобы замедлить расширение Вселенной. Напротив, темная энергия ускоряет свое расширение.

Еще раз, это число — приблизительная оценка. Когда используется для оценки общей массы Вселенной, она часто не соответствует тому, что предсказывают другие оценки. И, в конце концов, мы видим лишь меньшую часть целого.

Как люди узнали, что все в мире состоит из атомов?

Атомы совсем крошечные, очень и очень маленькие. Вы наверняка знаете, что материя состоит из них, но вы никогда их не видели и не увидите, потому что атом невозможно разглядеть невооруженным (и даже иногда хорошо вооруженным) глазом. Стоит ли принимать на слово то, что все в нашем мире построено из этих крошечных «кирпичиков»?

Стоит. Даже самые скептически настроенные люди не смогут усомниться в существующих доказательствах. Так как же ученые открыли для науки атомы? И, что гораздо важнее, как они смогли доказать существование этих крошечных частиц?

атом

В чем сложность?

Казалось бы, что проще, чем рассмотреть атомы в микроскоп. Но не все так элементарно, как сами частицы. Даже самый мощный микроскоп не в состоянии различить отдельный атом. Все потому, что размер атома гораздо меньше размера световой волны, и свет просто не может отражаться от крохотных частиц, тем самым превращая их в невидимые даже вооруженному глазу.

История открытия

Еще в конце XVIII века ученые стали замечать необъяснимое явление – ничем не обусловленное движение мелких частиц, например мельчайшей пыли над поверхностью воды. В середине XIX века шотландский ботаник Роберт Броун провел ряд экспериментов, в ходе которых он наблюдал движение мельчайших частиц каменной пыли. Через десятки лет частная теория относительности Эйнштейна путем математической формулы объяснила то, что в физике до тех пор называлось «броуновское движение».

К 1908 году все эксперименты, наблюдения и математические расчеты сводились к тому, что атомы реальны, и именно из них состоит любая окружающая нас материя. Однако не прошло и десятилетия, как наука ступила еще дальше и заставила ученых задуматься над тем, из чего же состоят сами атомы.

Структура атома

эйнштейн

То, что атом не является единым целым, может показаться неожиданностью, особенно учитывая происхождение термина, который с греческого языка переводится как «неделимый». Однако физике давно известен факт сравнительно сложной и изменчивой структуры атомов. Проще всего сравнить строение «элементарных» частиц с солнечной системой.

Обычный атом составляют три компонента: протоны, нейтроны и электроны. Протоны и нейтроны образуют своеобразное «ядро» атома, поэтому в физике их часто называют нуклонами. Электроны же кружат вокруг ядра, как планеты вокруг солнца. Так же как солнце составляет 99,9% массы солнечной системы, так и атомное ядро практически полностью занимает массу атома.

Электрон

Если атомы невероятно малы, то их составляющие частицы еще меньше. Удивительно, что первым из трех элементов атомной структуры был обнаружен самый маленький по размеру – электрон. Для того чтобы понять, насколько электрон меньше атомного ядра, легче всего представить себе шмеля, летающего вокруг воздушного шара. Так каким же образом такие невообразимо малые частицы материи были обнаружены? Все дело в том, что несмотря на размер, электроны обладают огромной энергией, достаточной для создания видимых световых излучений.

Именно благодаря этим излучениям их впервые обнаружил британский физик Джозеф Джон Томсон, который создал своеобразный прототип ускорителя элементарных частиц. В изогнутую стеклянную трубку, в которой предварительно был создан вакуум, Томсон с одного края пустил отрицательный заряд тока. В результате заряда электроны, которые сами по себе обладают отрицательным зарядом, смогли отделиться от ядра и направиться к противоположному краю трубки. При столкновении с поверхностью стекла отрицательно заряженные частицы создали удивительное желто-зеленое сияние.

Протон

протон

Открытие электрона заставило ученых задуматься над тем, что атом не так прост, как кажется. Большинство атомов обладают нейтральным зарядом, и чтобы удержать в своей структуре отрицательно заряженные частицы, им нужен положительный заряд. Так, в фокус ученых попал нуклеус, или атомное ядро. В начале XX века было проведено несколько экспериментов, в результате которых ученые доказали существование протонов и, кроме этого, строение атома, напоминающее структуру солнечной системы.

Читайте так же:
Абсолютный слух — разъясняем тщательно

Британский физик Эрнест Резерфорд провел эксперимент по рассеиванию частиц через тонкую золотую фольгу. Сам ученый признался, что не ожидал многого от эксперимента. Он направил на фольгу поток радиоактивных альфа-лучей, то есть радиацию с положительным зарядом. Большая часть радиации прошла прямо сквозь фольгу, но некоторые частицы отталкивались от золотой поверхности под достаточно большими углами, что указывало на положительно заряженные частицы внутри атомов. Причем частицы эти – достаточно большие и очень плотные, что позволило Резерфорду первым создать планетарную модель строения атома.

Нейтрон

Казалось бы, и строение и поведение атомов были подробно изучены и изложены в многочисленных трудах, но у науки возникла очередная проблема. Как только ученые смогли измерить атомную массу, появился вопрос: почему масса ядра в два раза больше, чем должны весить положительно заряженные протоны? С самого начала ученые предполагали наличие равного по количеству и массе числа нуклонов, не имеющих электрического заряда. Их даже заведомо назвали нейтронами, но никто не мог доказать их существование.

Ученый-физик из Кембриджского университета Джеймс Чедвик совершил прорыв в области ядерной физики, когда не поверил в то, что атомы бериллия излучают гамма-радиацию. На тот момент, гамма-лучи были еще очень свежим открытием, однако Чедвик не поверил большинству ученых и решил провести собственный эксперимент в 1932 году.

Он направил «радиацию», излучаемую бериллием, на материю, богатую протонами. Протоны были вытолкнуты, словно бильярдные шары; так, будто их отодвинули частицы с такой же массой. Такую реакцию невозможно объяснить гамма-радиацией, поэтому частицы были признаны нейтронами. Таким образом, все основные частицы атома были найдены, однако история его изучения на этом не заканчивается.

Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной

Владислав Лялин

Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать — и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью, описывающая все известные взаимодействия (кроме гравитации).

Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» — фермионы и переносчики взаимодействия — бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.

Бозоны

В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие — то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия — распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а распадается на электрон и нейтрино.

Читайте так же:
Что помогает справиться с возрастным ухудшением памяти

Остается последний бозон — бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц — именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.

Фермионы

Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны — нет.

Лептоны

Лептоны бывают трех поколений, в каждом поколении два лептона — один заряженный и один нейтральный. Первое поколение: электрон и электронное нейтрино, второе — мюон и мюонное нейтрино, третье — тау-лептон и . Лептоны очень похожи друг на друга, мюоны и (так же как и электроны) могут образовывать атомы, заменяя на орбиталях электроны. Главное их отличие — в массе: мюон в 207 раз тяжелее электрона, а в 17 раз тяжелее мюона. С нейтрино должна быть похожая история, но их массы настолько малы, что до сих пор не измерены. Эти массы точно ненулевые, доказательство этого факта было отмечено Нобелевской премией в 2015 году. Мюон и нестабильны: время жизни мюона примерно 0,2 миллисекунды (что на самом деле довольно долго), тау-лептон распадается примерно в 17 раз быстрее. Особенности нейтрино состоят в том, что они участвуют только в слабом взаимодействии, из-за этого их очень трудно засечь. Также они могут произвольно менять свой сорт: к примеру, электронное нейтрино может внезапно превратиться в мюонное, или наоборот. В отличие от бозонов, у лептонов существуют античастицы. Таким образом, всего лептонов не 6, а 12.

Кварки

В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны — это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух — мезонами.

© iStock

Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных заряда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды — антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк — любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».

Конфайнмент

Хорошо — допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.

Читайте так же:
Причина успешности одних и неудач других: читаем по порядку

Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.

Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и сил поверхностного натяжения она имеет вид шара — можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород — сдиссоциируют, — и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ — но не из молекул воды, а из адронов — и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.

В поисках теории всего

Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден — что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями — несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.

голоса
Рейтинг статьи
Ссылка на основную публикацию