100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько галактик может видеть человеческий глаз?

Сколько галактик видно невооруженным глазом?

Ответ – четыре, хотя оттуда, где вы сейчас сидите, видно всего лишь две, причем одна из них – Млечный Путь (в которой мы и находимся).

Учитывая, что, по оценкам специалистов, Вселенная насчитывает более 100 миллиардов галактик, от 10 до 100 миллиардов звезд в каждой, такой ответ немного разочаровывает. И все-таки это факт – всего четыре галактики видно с Земли невооруженным глазом, причем одновременно можно увидеть лишь половину из них (по две из каждого полушария). В Северном – Млечный Путь и Андромеду (М31), в Южном – Большое и Малое Магеллановы Облака.

Некоторые граждане с феноменальным зрением утверждают, будто способны видеть еще три: М33 в Треугольнике, М81 в Большой Медведице и М83 в Гидре, но это крайне трудно доказать. Число звезд, предположительно видимых невооруженным глазом, колеблется в очень широких пределах, однако все сходятся в том, что общий итог значительно меньше 10 000. Большинство любительских астрономических компьютерных программ пользуются одной и той же базой данных: ее список «видимых невооруженным глазом звезд» насчитывает 9600. По другим оценкам, это число варьируется от 8000 до менее чем 3000.

Когда-то ходила шутка, что в бывшем Советском Союзе кинотеатров больше (около 5200), чем звезд на ночном небе.

На канадском веб-сайте www.starregistry.ca всего за 98 канадских долларов можно назвать звезду в честь самого себя или своего друга/ подруги (а за 175 – еще и получить соответствующий сертификат в рамочке). Канадский список звезд, видимых невооруженным глазом, насчитывает 2873 позиции. Правда, ни одна из них не продается, поскольку все они уже носят исторические либо научные имена.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Сколько душ у человека?

Сколько душ у человека? Обские угры верили, что у мужчин есть пять (или семь) душ, тогда как у женщин — четыре (или шесть). Различали душу-дыхание — лили (у хантов — лил) и душу-тень — ис. Лили вселяется в тело человека при его рождении, а после смерти переходит в фетиш —

Сколько у вас ноздрей?

Сколько у вас ноздрей? Чтобы увидеть, что у тебя перед носом, требуется постоянная борьба. Джордж Оруэлл Четыре. Две вы видите, а две – нет.К такому открытию приводят наблюдения за процессом дыхания у рыб. Рыбы получают кислород из воды. У большинства из них две

Какие из творений рук человеческих видно с Луны?

Какие из творений рук человеческих видно с Луны? Минус десять очков, если вы ответили: «Великая Китайская стена».Ни одно из творений рук человеческих не увидишь с Луны просто так, за здорово живешь.Представление о том, что Великая Китайская стена – «единственное творение

Сколько у человека чувств?

Сколько у человека чувств? Как минимум девять.Пять – те, что всем нам известны, то есть зрение, слух, вкус, обоняние и осязание – были впервые перечислены еще Аристотелем, который, будучи выдающимся ученым, все же нередко попадал впросак. (К примеру, согласно Аристотелю,

Сколько у Земли лун?

Сколько у Земли лун? Как минимум семь.Разумеется, знакомая всем Луна (как называют ее астрономы) – единственное небесное тело, строго придерживающееся орбиты Земли. Однако теперь нам известно еще шесть «околоземных астероидов» (или «астероидов NEA»), которые следуют

Сколько ног у сороконожки?

Сколько ног у сороконожки? Не сорок.Несмотря на то что сороконожек изучают гораздо дольше, чем сорок лет, до сих пор не найдено ни одной, у кого этих ног было бы ровно сорок.У кого-то больше, у кого-то меньше. В 1999 году была обнаружена особь, ног у которой оказалось почти сто.

Сколько штатов в США?

Сколько штатов в США? Формально – сорок шесть.Вирджиния, Кентукки, Пенсильвания и Массачусетс – все они официально являются Содружествами (Commonwealths).Статус не дает им никаких особых конституционных полномочий. Они попросту выбрали для себя это слово в конце Войны за

Сколько длятся сутки?

Сколько длятся сутки? Зависит от обстоятельств.Сутки – это период времени, за который Земля совершает один поворот вокруг своей оси. И он никогда не бывает ровно двадцать четыре часа.Поразительно, но данный показатель может колебаться в ту или другую сторону на целых

Сколько живёт клуб?

Сколько живёт клуб? Под клубом мы здесь чаще всего понимаем собственно неформальную малую контактную группу определённый состав людей, о чём сразу предупредили читателя. Но под термином «клуб» нередко понимают совсем иное: совокупность устоявшихся местных традиций

Что видно на Луне

Что видно на Луне Ссора сестры и братаЛуна занимает в мифологии важное место, и обычно с ней связано больше сюжетов, чем с Солнцем. Смена лунных фаз определяла не просто временной цикл, но женский биологический ритм. Это не могло не вызывать удивления, порой вызывало

Читайте так же:
10 неожиданных признаков того, что вы очень умны

1.3. Сколько их было?

1.3. Сколько их было? 1917 г. расколол российское общество на два противостоящих лагеря: сторонников коммунистов, большевиков и тех, кто или не принял социалистическую революцию вообще, или принял, но с известной осторожностью. Накал политических и военных страстей привел к

Сколько хороших и сколько плохих

Сколько хороших и сколько плохих ПритчаУчитель решил проверить своих двух учеников: поняли ли они его наставления, что людей надо понимать душой, сердцем.— Пойдите в ближайшую деревню и посчитайте, сколько там хороших и сколько плохих людей! — сказал он им.Один вернулся

Каковы пределы человеческого зрения?

Человеческий глаз

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам — световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", — говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета — пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении

Мы быстро, просто и понятно объясняем, что случилось, почему это важно и что будет дальше.

Конец истории Подкаст

Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток — палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении — например, ночью (ночное зрение).

Содержащиеся в светочувствительных клетках рецепторы — опсины — поглощают электромагнитную энергию фотонов и производят электрические импульсы. Эти сигналы по оптическому нерву попадают в мозг, который и создает цветную картину происходящего вокруг нас.

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа — за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", — говорит Лэнди.

Автор фото, Thinkstock

Не весь спектр полезен для наших глаз.

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем — спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией — отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) — способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Читайте так же:
Что можно и что нельзя есть и пить при простуде?

"Точно подсчитать, сколько мы видим цветов, не представляется возможным, — говорит Кимберли Джемесон, научный сотрудник Калифорнийского университета в Ирвайне. – Некоторые видят больше, некоторые — меньше".

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек — они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, — говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, — это определенное количество света, излученного или отраженного на него объектом, — говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".

Автор фото, Thinkstock

Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Автор фото, Thinkstock

Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Читайте так же:
10 секретов человеческой психики, о которых мало кто знает

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора — в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Сколько галактик может видеть человеческий глаз?

Сколько галактик может видеть человеческий глаз?

Космос

Во Вселенной имеется огромное множество галактик, изучить которые на данный момент не представляется возможным. Ученые ежедневно наблюдают за ними с помощью современных технологий, но даже их недостаточно, чтобы детально рассмотреть все объекты. У человека, не имеющего телескоп, тоже есть возможность увидеть галактики. Но сколько из них он в состоянии рассмотреть с помощью глаз?

Когда появились галактики

По предварительным оценкам, вселенная появилась 13.8 млрд лет назад из-за взрыва сингулярности, представлявшей собой небольшую сферу. С того момента пространство вокруг начало быстро расширяться, образуя космос.

Первые галактики и звезды стали формироваться лишь спустя 300 млн лет. Более того, современный вид они начали приобретать спустя миллиарды лет. Некоторые галактики приняли форму спиралевидных дисков, а другие обладают шарообразной структуров.

Точное количество галактик во Вселенной неизвестно, но по оценкам, их порядка двух триллионов.

Сколько галактик может видеть человеческий глаз?

Разглядеть какие-либо галактики можно только на небе, где хорошо видны звезды. Наблюдать их в городской области невозможно, поскольку свет от улиц, домов и рекламных вывесок перекрывает блеск звезд.

И если человек оказался, например, в чистом поле, и ему видны все звезды на небе, то он сможет рассмотреть шесть галактик.

Млечный Путь

Млечный Путь

Млечный Путь – галактика, где находится Солнечная система. Соответственно, большинство звезд вокруг входят в ее состав.

Большое Магелланово Облако

Большое Магелланово Облако

Большое Магелланово Облако – карликовая галактика, являющаяся спутником Млечного Пути, находится на расстоянии в 163 тысячи световых лет.

Малое Магелланово Облако

Малое Магелланово Облако

Малое Магелланово Облако – еще один спутник Млечного Пути, в который входит полтора миллиарда звезд.

Андромеда

Андромеда

Андромеда – большая галактика, находящаяся в составе одноименного созвездия. Является ближайшей к Солнечной системе и находится на расстоянии 2,52 млн световых лет.

Треугольник

Треугольник

Треугольник – известна самой большой черной дырой, масса которой в 16 раз больше, чем у Солнца.

Боде – расположена в Большой Медведице, считается спиралевидной галактикой идеальной формы.

Для наблюдения более далеких галактик уже потребуется бинокль или телескоп.

Человеческий глаз может увидеть шесть галактик: Млечный Путь, Большое и Малое Магеллановы облака, Андромеду, Треугольник и Боде.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

О том, почему телескоп «Хаббл» может создавать относительно детализированные снимки далеких галактик, но не может «разглядеть» Плутон

image
(Предположительный вид Плутона)

Задумывались ли вы когда-нибудь, почему космический телескоп Хаббл создает невероятно детализированные снимки галактик, находящихся от нас в миллионах световых лет, но не может сделать достаточно детализированный снимок Плутона и других планет в нашей солнечной системе?

Различие между снимками Плутона и галактики Андромеды

Минимальное расстояние от Плутона до Земли = 4.280.000.000 км (7,500,000,000 км при максимальном отдалении)

И максимальное качество снимков, которое может сделать Хаббл, выглядит вот так:
Слева снимок Хаббла
Справа снимок космического аппарата «Новые Горизонты», который был сделан после 9 летнего полета к Плутону, в 2015 году

image. image

Если вы не знаете, что такое «Новые Горизонты», вот короткое видео о миссии этого первооткрывателя —

18 921 056 800 000 000 000 км

image
скриншот из видео ниже

Посмотрите это короткое видео(откроется в этой же вкладке) чтобы более менее понять масштабы
Прямые ссылки на видео
4K Ultra HD
cdn.spacetelescope.org/archives/videos/ultra_hd/heic1502a.mp4
Full HD
cdn.spacetelescope.org/archives/videos/hd_1080p25_screen/heic1502a.mp4
HD & Apple TV Preview
cdn.spacetelescope.org/archives/videos/hd_and_apple/heic1502a.m4v

К, сожалению, вставить сюда самый детальный снимок Андромеды не получится, его размер 4,3 ГБ (нужно 600 HD дисплеев для того, чтобы отобразить его полностью), но вы можете оценить качество снимка, увеличив и рассмотрев его, вот на этом сайте (Все большие светящиеся шарики на снимке — звезды нашей галактики, а тот триллион маленьких точек, которые видно при приближении — это звезды Андромеды)

Чтобы лучше понять масштабы

И так:
1 световой год wiki = 9 460 528 400 000 км

Читайте так же:
5 психологических причин лишнего веса

Свет от Солнца до Земли долетит за

8 минут (а до Плутона в 29-52 раза дольше т.е 4-7 ч)
Свет от Плутона до Земли долетит за

4 часа (при ближайшем сближении с Землей)
А от Андромеды до Земли долетит за

912 500 000 дней (2 500 000 лет)

И того, мы имеем: Плутон, находящийся от нас в 4 световых часах и Галактику Андромеды, находящуюся от нас в 21 900 000 000 световых часах (2 500 000 световых годах или 18 921 056 800 000 000 000 километрах)

Только подумайте — мы видим не галактику Андромеды, а то, что с ней происходило и как она выглядела 2 500 000 лет назад, за этот промежуток времени, пока к нам летел свет от нее, на тех не многих планетах в зоне обитаемости wiki , в этой галактике, могла зародиться жизнь и дойти до определенного эволюционного этапа развития, и возможно несколько из тех видов, могли бы даже развиться до нашего уровня либо превзойти его в десятки раз.
По скромным подсчетам, только в видимой вселенной, должно быть минимум 4.2 — 5.3 триллиона экзо — планет в зоне обитаемости, а это значит, что есть не плохой шанс для поселения жизни на каком — то проценте из этих планет, и эволюционного процесса, достаточного по времени, для того, чтобы эволюционировать в более сложные жизненные формы, правда, вероятность того, что эти жизненные формы будут похожими на людей, очень мала: измените всего один из параметров, например, уровень радиации на планете, и уже эволюционный процессс пойдет с некоторым отличием от наших форм жизни на Земле, а этих параметров миллионы

И даже, если в галактке Андромеды, на какой — нибудь из планет могла зародиться жизнь и эволюционировать хотя бы до нашего уровня, и при условии того, что они уже прослушивают вселенную на радиоволны, впервые они узнают о нашем существовании минимум через 2 499 900 лет, т.к первые радиоволны, содержащие нашу историю и несущие в себе информацию о нашем существовании, были отправленны в космос около 100 лет назад, после создания радио, поэтому вероятность узнать о внеземной жизни крайне мала, если конечно же более развитая цивилизация, все еще не научилась применять эффект мистера Мигеля Алькубьерре wiki и не спешит на поиски экзопланетных цивилизаций. При том, возможности не достаточно, нужно еще будет желание искать нас, что мало вероятно, т.к, если они уже настолько развиты, что имеют возможность управлять пространственно — временным континуумом, будем ли мы для них чем — то интересным, настолько, чтобы у них появилось желание познакомится с нами, чтобы они вдруг захотели пожать руку «самим» людям. Максимум, что они сделают — изучат ответные реакции на среду и определенные факторы и особенности процессов взаимодействия среды на нас, как более глупого вида, как мы это делаем с лабораторными крысами.
«Как часто у вас возникает желание остановиться и начать диалог с червем? Может вы, конечно, и останавливались, чтобы поговорить с ним, но вы ведь не ждали, что он вам ответит?» (с) Нил деГрасс Тайсон — известный астрофизик и популяризатор науки.
image

Вернемся к теме статьи. Математическое объяснение

Чтобы понять, почему мы видим галактики такими четкими, в отличии от Плутона, нужно понять, что такое угловое разрешение камеры и соотношение дистанции до объекта к его размеру

Угловое рарешение — это способность глаза, телескопа, микроскопа, камеры и тд, распознать детали другого объекта. Угловое разрешение обычно измеряют в угловых секундах

1 градус = 3600 угловых секунд

Луна, к примеру, занимает на нашем небе 1800 угловых секунд т.е 0,5 градуса

Луна
Чтобы всем было понятно о чем речь, рассмотрим Луну для сравнения.
Луна 3476 км в диаметре, среднее расстояние до Земли 384,000 км
Полная луна покрывает 1800 угл сек неба т.е. 0,5 градуса

Зная это, мы можем расчитать, размер объекта, который вы можете увидеть на Луне с Земли своими глазами

Все очень просто: берем диаметр 3476 км, делим его на количество 1800 угл сек, которое Луна покрывает в небе и получаем = 1,93

1,93 это количество км, показывающие насколько велико разрешение 1 угловой секунды (основанной на диаметре и дистанции до Луны)

1,93 умножим на угловое разрешение ваших глаз 60 и получим = 115,8 км
Минимальный объект, который вы сможете увидить своими глазами на Луне, с Земли будет размером

116 км
Удалите Луну дальше от нас, оставив диаметр таким же — она будет покрывать меньше угловых секунд в небе, и вы будете видеть все меньше и меньше деталей по мере отдаления Луны.

Читайте так же:
Почему при жарке масло стреляет? Причины, что делать, фото и видео

Камера Хаббла
Оба снимка — Плутона и галактики, показанные в начале статьи, были сделаны «на широкоугольную камеру 3» (TWС3) Хаббла
Разрешение этой камеры = 0,05 угловых секунд
Основное зеркало Хаббла 2.4 метра диаметром, это значит, что используя формулу лимита Дэйвса wiki мы узнаем, что это будет равным 0.05 угл сек, что гораздо лучше разрешения человеческого глаза (60 против 0.05, — меньше лучше)
Умножая, уже посчитанную величину 1,93, на угловое разрешение Хаббла (0,05) получаем, что Хаббл может увидить объект на Луне размером

100 м (против глаза человека

Плутон
Угловой диаметр Плутона всего лишь 0,115 угл. сек (в ближайшем сближении с Землей) это очень мало, при том что его размер всего лишь 2400 км в диаметре
(2400 км в диаметре) / ( 4.280 млн км) = 0.00000056 (4.280 млн км — это расстояние в ближайшем сближении с Землей, как уже было указано выше в статье)

Это значит, что минимальный объект, который Хаббл сможет рассмотреть на Плутоне, должен быть размером не меньше, чем 1029 км ( 2368 /0,115 = 20,600 км. | 20.600 * 0.05 = 1029 км)
То есть при разрешении телескопа в 0,05 угловых секунды, Плутон будет состоять из 2 пикселей, так как 1029 км — это почти половина размера всей планеты

Разделя соотношение Плутона на угловое разрешение Хаббла 0,05 переведенное в радианы 2.42406841 × 10^-7 получим
0.00000056 / 0.00000024 =2.3 разрешение (пкс)

Галактика Андромеды
(260,000 св. лет в диаметре) / (расстояние до нее 2 млн св. лет) = 0.13 (соотношение диаметра к расстоянию до нас)
1 град = 3600 угл сек (угловых секунд)
В нашем небе она занимает 10 800 угл. сек т.е.3 градуса (Луна занимает 0.5 градуса, т.е Луна на нашем небе в 6 раз меньше Андромеды)

Делаем то же самое, делим вычисленное соотношение на угловое разрешение Хаббла в радианах 2.42406841 × 10^-7
0.13 / 0.00000024 =

541 600 разрешение (пкс)

image

С Андромедой все ясно, но что если взять более далекую галактику, одну из самых ранних образованных галактик, например галактику EGS-zs8-1, которая в 6550 раз дальше галактики Андромеды

EGS-zs8-1 находится в 13.1 млрд световых годах, от нас (возраст вселенной 13,8 млрд лет)
Это самая далекая дистанция когда — либо измеренная от земли до другой галактики. Дистанцию на таких больших расстояниях измеряют по красному смещению wiki . чем больше его значение, тем дальше находится галактика. У этой галактики, самое большое из когда — либо обнаруженных смещений

image

Ну вот, этот снимок уже более схож со снимком Плутона, показанного вначале статьи 🙂

Причина того, что Хаббл может показывать настолько более детализированные снимки галактик, в отличии от планет нашей солнечной системы в том, что галактики невероятно огромного размера. И в соотношении их удаленности от нас с их размером, (как показано выше соотношение всего лишь 0,13 против соотношения Плутона = 0.00000056), дают нам возможность делать такие прекрасные снимки, даже таким устаревшим телескопом как Хаббл. Скоро ему на замену, выйдет телескоп Джэймса Вэба, тогда мы сможем увидить галактики в еще большей детализации.

Как мы уже поняли, Андромеда занимает на нашем небе в 6 раз больше «места» (градусов), чем Луна и если бы Андромеда была ярче, мы бы видели ее на нашем небе такой

image
Прув YouTube на 5:35

Даже, если рассмотреть галактику NGC 5584, находящуюся в 70 млн световых лет от нас, что в 35 раз дальше Андромеды, она все еще будет в

1200 раз детальнее, чем Плутон, т.к, не смотря на ее огромную отдаленность от нас, соотношение диаметра и удаленности больше в

1200 раз, таковых у Плутона ( 0.00069 / 0.00000056 =

Надеюсь хоть не много кому — нибудь помог в понимании того, почему же современные телескопы могут сделать невероятно красивую картинку галактики или туманности (например такую или что-то из этих из ТОП100 Хаббл фото),
но не могут показать достаточно детализированную фотографию Плутона или некоторых других планет нашей солнечной системы.

Напоследок

Что есть интересного посмотреть про космос:
Всем рекомендую посмотреть просто эпические серии «Космос: Пространство и время» Kinopoisk (Продолжение знаменитых серий Карла Сагана)
Посмотреть в HD / fullHD можно на cxz.to или с помощью popcorntime (только на англ)
(не реклама)

Для тех, кто знает англ и кому интересно: ниже, под спойлером, потрясающее видео от NASA о том аппарате — открывателе новых горизонтов, который уже через пол месяца, даст нам возможность впервые увидить нашу 9 «планету» — Плутон (вместо размытой точки на снимке из нескольких серых пикселей, которые мы имеем сейчас)

голоса
Рейтинг статьи
Ссылка на основную публикацию