100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разработана концепция создания ракетного топлива на Марсе для возвращения астронавтов на Землю

masterok

В Технологическом институте Джорджии исследователи представили концепцию ракетного топлива, которое может быть создано прямо на Красной планете и использовано для возвращения астронавтов на Землю в будущем.

Такое топливо имеет биологическую основу. В его составе присутствует несколько природных компонентов, имеющихся на Марсе: вода в замороженном состоянии, свет Солнца и углекислый газ.

Концепция предполагает доставку на Марс двух видов микробов. Для первого этапа требуются водоросли или цианобактерии. С их помощью можно извлекать из атмосферы планеты углекислый газ (оболочка состоит на 95% из CO2). Также водоросли способны продуцировать сахара при участии солнечного света.


Фотобиореакторы размером с четыре футбольных поля, покрытые цианобактериями, могут производить ракетное топливо на Марсе

А второй микроб представляет собой кишечную палочку. Она превращает сахара в ракетное топливо. Вещество 2,3-бутандиол (пропеллент) уже используется на Земле в сфере производства полимеров и резины. Согласно текущему плану, космические аппараты, которые полетят на Марс и вернуться обратно, будут работать на жидком кислороде и метане. Поскольку ни одного из этих компонентов на планете нет, их нужно туда доставить.

Однако эта процедура слишком затратная: расчеты показывают, что транспортировка 30 т жидкого кислорода и метана обойдется приблизительно в 8 млрд долларов. Как вариант, путем химического катализа можно получить кислород из марсианского углекислого газа. Такой способ предлагает НАСА, но он не отменяет необходимость в доставке метана. Биотехнологическая стратегия (bio-ISRU) – альтернативный вариант. Она позволяет производить из углекислого газа и жидкий кислород, и пропеллент.

Таким образом, можно снизить расходы на осуществление космической миссии, а также получить около 44 т чистого кислорода (избыточного), пригодного для прочих целей.

План bio-ISRU включает доставку на Марс пластиковых материалов, необходимых для сооружения фотобиореакторов, которые сравнятся по размеру с 4-я футбольными полями. В них будут выращиваться цианобактерии.

В настоящее время пилотируемый полет на Марс рассматривается как часть будущей колонизации Красной планеты. Его продолжительность составляет 6-8 месяцев. Современные технологии позволяют осуществить эту миссию, хотя и требуют значительных затрат, а также решения технических и научных вопросов. Главная сложность пока состоит в обеспечении защиты от излучения в процессе полета.

НАСА, ЕКА и Роскосмос заявили о своем намерении организовать пилотируемый полет на Марс в 21-м веке, к 2045 либо 2050 гг. Россия и США планируют сперва отработать марсианские программы на Луне, поскольку спутник Земли считается подходящим вариантом для испытания различных технологий. Но также инициативу в этом вопросе проявляют частные компании, включая проекты SpaceX, а также программу «Столетний космический корабль» (безвозвратное направление людей на Марс).

Разработана концепция создания ракетного топлива на Марсе для возвращения астронавтов на Землю

Обзор существующих и будущих технологий, которые помогут долететь до Марса и выжить на нем

24 декабря 2018

Новые материалы

Гаджеты для здоровья

Технологичное питание

Радиационная защита

Лазерное оружие

Новое топливо

Можно быть уверенным, что не только миллениалы, но и многие люди старшего возраста увидят день, когда на Марс отправится первая миссия землян. Будет ли это американская, европейская, российская или, что более вероятно, международная экспедиция, она в любом случае продемонстрирует новейшие достижения всего человечества.

Лучшие умы мира обучают искусственный интеллект, разрабатывают многоцелевых роботов и системы защиты от космической радиации. Ученые изобретают новые способы воспроизводства воды и воздуха.

Прообразы технологий, которые будут использовать первые колонизаторы Марса, уже можно найти в проектах от корпораций Кремниевой долины, NASA и даже российских нефтяников. Разбираемся, что это за ноу-хау и как они помогут на Красной планете.

Полет на Марс — дорогое удовольствие, ведь только в одну сторону такое путешествие растягивается на 55 млн километров. Астронавтам нужны ракеты нового поколения, оснащенные мощными, но экономичными двигателями. А еще будущие космические корабли должны быть многоразовыми, чтобы звездный путь не был билетом в один конец.

Совсем близко к этой мечте подошли в США, где космическая программа в последние годы переживает ренессанс. Идеи и проекты NASA активно подхватили частные предприятия.

Компания SpaceX на смену двигателю Merlin, созданному в начале 2000-х, разработала инновационный — SuperDraco. Он создан специально для пилотируемого корабля Dragon V2, предназначенного для доставки экипажа из семи человек на Международную космическую станцию и возвращения на Землю.

Читайте так же:
Самые населенные города мира – список, площадь, количество населения, фото и видео

Отличительная особенность SuperDraco — камера сгорания, которая напечатана на 3D-принтере. Это существенно удешевило его производство. А используемая в двигателе топливная смесь позволяет перезапускать его многократно, даже через несколько месяцев, проведенных в космосе.

Амбициозные планы и у американского стартапа Relativity Space, который разработал ракетный двигатель Aeon, полностью напечатанный лазерным 3D-принтером. Компания уже строит первую ракету Terran 1, изготовленную таким же способом. Количество деталей при трехмерной печати должно уменьшиться в сто раз, а время, необходимое для постройки одной ракеты, сократится буквально до нескольких дней.

А еще для будущей марсианской колонии людям понадобятся жилые и хозяйственные модули, многочисленные машины и оборудование. И то, и другое будет выходить из строя, а доставлять детали с Земли – долго и дорого. Технология 3D-печати поможет решить и эту проблему.

Существующие разработки уже позволяют печатать на принтере целые дома. Так, власти Дубая хотят к 2025 году построить в городе квартал из зданий, созданных на 3D-принтере. Технология успешно внедряется и в автомобилестроении. Например, Ford активно применяет 3D-печать в производстве деталей для серийных моделей.

И самое главное, метод лазерной печати металлом можно использовать на других планетах, например, на Марсе. Таким образом, если технология зарекомендует себя, то будущие колонисты смогут строить себе не только дома, но и целые межпланетные ракеты.

В космосе сверхпрочные, устойчивые к радиации и экстремальным температурам материалы будут особенно необходимы. Инженеры возлагают большие надежды на создание специальных материй, которые не встречаются в природе, а будут искусственно синтезированы для межпланетных экспедиций.

К примеру, российским ученым из Сколково и Российской академии наук удалось получить новое соединение вольфрама и бора, которое в полтора раза тверже победита – материала-«звезды» металлургии – и существенно дешевле его в производстве. Новинке нашли применение в технологиях для подземного бурения: синтезированный материал используют для замены элементов из победита на конце буровых механизмов.

Следующая цель — создание новой сверхтвердой материи, которая сможет заменить дорогие алмазные пластины на буровых резцах, используемых для устройства скважин и тоннелей на глубине в несколько километров под землей. Уже получены тестовые версии материалов, сопоставимых по свойствам с кубическим нитридом бора — это одно из наиболее близких к алмазу особо твердых соединений.

Появление новых материалов снизит затраты на подготовку межпланетных экспедиций. Это дополнительно приблизит долгожданную высадку людей на Красной планете.

Переселенцы на Марс, как и мы, будут носить фитнес-трекеры, только гораздо более продвинутые. Нынешний уровень технологий и точность измерений уже позволяют в реальном времени отслеживать показатели здоровья человека и давать нужные сигналы и рекомендации. Так, часы Apple Watch научились делать ЭКГ и обнаруживать отклонения от нормы сердечного ритма, способные перерасти в сердечный приступ, и прочие проблемы.

Пройдет еще несколько лет — и браслеты будут мониторить давление, делать анализ крови, вдыхаемого воздуха и даже уровня радиации вокруг. И это не говоря о контроле положения тела в пространстве.

Промышленные системы мониторинга состояния человека уже разработаны и используются на опасных или труднодоступных объектах. Кроме основных физиологических показателей, они замеряют температуру окружающей среды, запыленность, уровень вибрации. Пилотные проекты тестирования таких систем, к примеру, были опробованы компанией «Газпром нефть» для обеспечения безопасности и здоровья работников на отдаленных месторождениях. Любое падение человека или нештатная ситуация с сотрудником фиксируется системой, которая оповещает экстренный персонал и медицинские службы.

В экстремальных условиях космического полета или пребывания на Марсе такие технологии в прямом смысле жизненно необходимы.

Производство продуктов питания на Марсе — амбициозная задача, которую давно пытаются решить на Земле. Допустим, первая экспедиция возьмет с собой достаточно консервированной (а точнее, лиофилизированной) еды и концентратов. Тем не менее, вопрос выращивания овощей на Марсе должен быть решен для будущих поколений поселенцев.

Ставший уже хрестоматийным пример Марка Уотни из фильма Ридли Скотта «Марсианин» пусть и получил одобрительные отзывы научных консультантов, но не лишен недостатков и художественных преувеличений. Напомним, персонаж Мэтта Деймона, оставшись на Марсе один, для собственного выживания начинает выращивать картофель на марсианском грунте.

Читайте так же:
Насекомые и их личинки – описание, фото и видео

Главная проблема здесь — радиация и тяжелые металлы. Марсианский грунт сам по себе не подходит для растений. Даже если будущим колонистам удастся вырастить на этой почве овощи и зелень, они будут непригодны в пищу из-за радиоактивного заражения и содержания токсичных элементов.

Более перспективной считается установка на Марсе компактных тепличных и гидропонных систем, где растения будут выращивать на субстрате — заменителе почвы, доставленном с Земли. При этом остаются проблемы обеспечения растений достаточным количеством света и защиты их от убийственной радиации.

Сейчас в мире реализуется несколько проектов, призванных решить проблему производства продуктов в космосе и на других планетах. Так, голландские ученые из Вагингенского университета выращивают овощи на вулканической почве, которая якобы близка по составу к марсианскому грунту. А космонавты на МКС в 2015 году получили первый урожай салата, выращенного в условиях невесомости и повышенной радиации.

Радиационный фон Марса составляет в среднем 8 рад в год, но может достигать и 2 рад в день во время вспышек на Солнце. Это в разы больше того, с чем сталкиваются простые люди на Земле и даже подготовленные астронавты на МКС. Так что радиация остается в числе главных проблем, которую придется решать будущим межпланетным путешественникам.

Чтобы защититься от нее, ученые предлагают различные способы, например, увеличивать толщину обшивки космических аппаратов и жилых модулей. Или использовать источник магнитного поля, который будет защищать людей и технику от солнечного ветра — основного источника смертельного облучения. Альтернативный способ — строить жилые модули под поверхностью Марса, так, чтобы слой почвы был естественным щитом от радиации.

Научиться воспроизводить воздух на других планетах — нетривиальная задача. Причем нужно научиться это делать с наименьшими энергозатратами.

Для выработки пригодного для дыхания воздуха на Марсе ученые предлагают использовать атмосферу самой планеты. Она довольно разряжена, а масса составляет лишь 0,5% массы земного газового слоя. При этом марсианский воздух содержит большое количество углекислого газа — примерно 95%. Предполагается, что первые колонизаторы будут использовать устройства для преобразования углекислого газа в кислород, что позволит получать и пригодный для дыхания воздух, и топливо для заправки машин и ракет.

Еще в 2014 году NASA представило проект Moxie, разработанный в недрах Массачусетского технологического института. Это компактное устройство методом электролиза преобразует углекислый газ в кислород. Существующий прототип — это аппарат, который питается от энергоустановки мощностью 300 Вт. Он может производить до 10 граммов кислорода в час и работать при температуре до 800°С.

NASA планирует отправить на Марс большой аппарат Moxie наряду с другим оборудованием для будущей колонизации на грузовом корабле после 2030 года.

Сейчас на обеспечение работы экипажей МКС тратятся огромные средства и усилия. Почти все на орбиту доставляется с Земли на грузовых кораблях. Такие полеты очень дорогостоящие, поэтому повышение автономности станции является одним из приоритетов для ученых. Заметного прорыва в последние годы позволила добиться установка на МКС системы рециклинга воды. Она позволяет извлекать из жидких отходов «жизнедеятельности» станции до шести тысяч литров питьевой воды в год, что сокращает потребности в ее поставках почти вдвое.

В будущем для очистки воды в космосе пригодятся и специальные бактерии. К примеру, такие микроорганизмы уже используются в российском проекте «Биосфера». Эту беспрецедентную биологическую систему очистных сооружений сейчас применяют на Московском нефтеперерабатывающем заводе. Как отмечают эксперты, аналогов проекта в мировой промышленности не существует.

После того, как вода проходит механическую очистку, а мощный поток воздуха выбивает из нее оставшиеся примеси и нефтепродукты, к работе приступают специально выращенные бактерии. Микроорганизмы съедают остатки нефтепродуктов. Затем воду отфильтровывают сквозь мембраны с отверстиями толщиной меньше волоса. На финальном этапе воду пропускают через 200 тонн активированного угля и через специальный фильтр, размер ячеек в котором не больше молекул воды. На выходе получается питьевая вода.

С самого своего возникновения в 1950-х годах лазеру суждено было стать оружием. Уже больше полувека исследования лазера ведутся главным образом в оборонной сфере. Но и гиганты аэрокосмической отрасли не отстают.

Кстати, один из самых известных проектов лазерного оружия — это разработка Boeing. Изначально лазер компания решила использовать для перехвата ракет. Однако позднее технология была модернизирована и успешно опробована для других целей. С ее помощью научились уничтожать артиллерийские мины и даже самолеты-беспилотники.

Читайте так же:
Кембридж, Великобритания: разбираемся обстоятельно

Развитие мощностей лазерных установок не будет лишним и в суровых условиях космоса. Станет возможным изменение ландшафтов других планет, устранение астероидов и прочих препятствий на пути покорителей новых планет.

К созданию ручного лазерного оружия технологии тоже подошли совсем близко. В июле 2018 года специалисты китайского Института оптики и высокоточной механики закончили разработку лазерной штурмовой винтовки. Пока она классифицируется как нелетальная, но может быть использована и как зажигательная, и для нанесения телесных повреждений противнику. Радиус действия оружия — 800 метров, а количество выстрелов на одном заряде аккумулятора — более тысячи. Сейчас винтовку готовят к массовому производству по заказу спецподразделений китайской полиции.

Ученые прогнозируют создание к 2030 году «умных» машин, которые будут в разы превосходить по интеллекту любого человека. Программы уже потеснили людей в узких областях. Например, нейросети не хуже врачей диагностируют многие заболевания — определяют риск сердечных болезней по сетчатке глаза и анализируют рентгеновские снимки.

На новый уровень искусственный интеллект вышел в 2017 году. Программа для нейронных сетей AlphaZero в течение 24 часов самостоятельного обучения достигла сверхчеловеческого уровня игры в шахматы и другие интеллектуальные игры, победив все программы-предшественники с разгромным счетом и тотальным доминированием. Жертвой пали Stockfish, Elmo и другие программы, уже давно превзошедшие живых игроков. Это произвело настоящий фурор не только в области спорта, но и среди экспертов по искусственному интеллекту во всем мире.

Не отстают в машинном обучении и российские специалисты. На недавнем конкурсе по машинному обучению Gazprom neft Smart Oil Contest команде МГУ на основе данных со скважин удалось построить точную модель предсказания получения нефти с месторождений. Зачем искусственный интеллект нефтяникам? Сейчас, чтобы добраться до нефти в недрах, приходится решать множество уравнений с большим количеством неизвестных на основе огромного массива данных — эта задача по силам только машинам.

В настоящее время цифровые модели месторождений создаются на основе промысловых данных, полученных из разных источников — анализа сейсмики, геологоразведки, лабораторных исследований. Процесс напоминает судоку: есть небольшой набор данных, а остальное искусственному интеллекту нужно достроить самостоятельно.

Только в отличие от самых сложных кроссвордов в данном случае объем знаний и неизвестных можно сравнить с соотношением большой цистерны и Азовского моря. Несмотря на это, «умные» программы уже научились собирать в огромные цифровые модели целые нефтеносные бассейны размером с регионы. Программы на основе Big Data находят закономерности в геологических сочетаниях и достраивают недостающую информацию.

Перебор различных комбинаций установки скважин и освоения залежей происходит по разработанному алгоритму оптимизации. Он позволяет не тратить время на расчет заведомо неэффективных вариантов. Больше не нужно терять месяцы на сложную работу инженера — программа за неделю предлагает несколько оптимальных планов добычи углеводородов. Уже сегодня опыты показали, что машина в состоянии находить варианты, которые на 20% эффективней предложенных человеком.

НАСА: проложить путь людям на Марс может лишь ракета с ядерным реактором

На днях на Хабре публиковалась статья о сложностях высадки марсохода на поверхность Красной планеты. Если кратко, то рассчитать и реализовать эту высадку — чудовищно сложно. Еще сложнее организовать доставку на Марс людей — колонистов или космонатов-исследователей. Но если говорить о регулярном сообщении с Красной планетой, то проблема выходит на новый уровень.

Основная проблема — в отсутствии надежного транспортного средства. Сейчас идет подготовка ракеты и корабля от SpaceX, но до реального полета на Марс может пройти (и скорее всего, пройдет) несколько лет. Причем реактивная тяга такой ракеты образуется в результате сжигания жидкого топлива. А по мнению НАСА, ракеты на жидком топливе — не самый эффективный вид транспорта, нужны ядерные системы.

Топливо для ракет очень дорогое, а по словам представителей НАСА, для полета на Марс понадобится от 1000 до 4000 тонн топлива. Это несколько миллиардов долларов США за пуск (хотя, помнится, Маск говорил, что топливо — это всего 5% стоимости всего пуска). Правда, все сказанное относится к ракете самого агентства, которая называется Space Launch System. Она разрабатывается уже много лет, и пока что свет в конце туннеля этого проекта не появился.

Читайте так же:
Необычный материал радужной окраски нашли в животе тихоходки

Тем не менее, расчеты по полету на Марс с использованием сверхтяжелой ракеты-носителя SLS у НАСА есть. И эти расчеты показывают, что один пуск обойдется в $2 млрд. И это вроде только стоимость топлива. 10 пусков, которые нужны для отправки достаточного для основания небольшой станции полезного груза, обойдутся в $20 млрд.

По мнению представителей НАСА, более эффективный способ запуска — это ядерные ракеты.

Космический транспорт на ядерной тяге

Специалисты агентства подготовили отчет, в котором говорится, что для реализации миссии по отправке человека на Марс в 2039 году требуется именно ядерный транспорт.

«Один из ключевых моментов путешествия на Марс в том, что если мы хотим отправлять людей регулярно, то наиболее удобный путь — это как раз ракеты на ядерной тяге», — заявил Бобби Браун, представитель Jet Propulsion Laboratory.

К сожалению, в отчете не указывается конкретная технология — авторов документа и не просили это делать. В общих чертах описано, что есть два варианта — ядерная тепловая силовая установка и ядерная электродвигательная силовая установка. НАСА, насколько можно понять, отдает предпочтение первому варианту.

Ядерная система требует гораздо меньше топлива — около 500 тонн вместо 4000, уже упоминавшихся выше. Если говорить об эксплуатации такой системы, то, по мнению агентства, расходы будут ниже, чем в случае эксплуатации топливной ракеты.

И что теперь?

В отчете говорится, что если НАСА планирует использовать ракеты на ядерной тяге через 10-15 лет, то разработку соответствующих технологий нужно начинать уже сейчас. Все это несколько странно, поскольку ранее агентство очень активно продвигало идею полетов на SLS. Сейчас эту ракету-носитель предлагается использовать для полетов на Луну.

Самое интересное в проекте то, что средства на него НАСА не запрашивала, но Конгресс США все равно выделил средства. Причем в этом году агентство получило сразу $110 млн именно на исследование возможностей ядерных систем запуска.

Если НАСА решит все же развивать это направление и дальше, то средств понадобится еще больше. Тем не менее, агентство считает, что справится со всеми проблемами. «Это технологический проект, для работы над которыми и было создано НАСА, так что вся страна ждет от нас результатов», — заявил Браун.

А что Starship?

Несмотря на проблемы, топливная ракета-носитель Starship, разрабатываемая SpaceX, постепенно эволюционирует. Результаты испытаний дают надежду на то, что в течение нескольких лет ракета сможет отправить людей и оборудование на Марс.

Да, топлива понадобится много, но если рейсы станут регулярными, то компания Маска планирует создать нечто вроде промежуточной заправочной станции на низкой орбите Земли. Другие ракеты-носители станут доставлять в определенные точки горючее, которым заправят уже ракеты, отправляющиеся на Марс.

Представители НАСА при этом считают, что у проекта Маска есть все шансы на реализацию, так что два параллельных сценария полета на Красную планету — это хорошо.

Реальна ли ядерная ракета в ближайшем обозримом будущем?

Честно говоря, вряд ли. Скорее всего, этот отчет — просто чисто теоретическое изыскание, которое не получит продолжения, по крайней мере, сейчас. Дело в том, что даже с отработанной технологией двигателей на жидком топливе у НАСА проблемы.

Та же ракета-носитель SLS уже давно вызывает вопросы не только у обычных людей, но и у правительства США. Проект стоит огромную кучу денег, на проект SLS НАСА тратит в год примерно столько, сколько хватило бы на 15-20 пусков Falcon Heavy. Эта ракета отъедает весьма изрядную долю бюджета агентства, речь идет о миллиардах и миллиардах долларов.

В 2018 году НАСА попыталось рассказать о том, насколько полезной будет эта ракета. Дескать, она может выводить на орбиту «цельные грузы большой массы» за раз. Другие ракеты вроде бы так делать не могут. И все бы хорошо, но это просто слова, поскольку плана эксплуатации SLS пока нет — просто потому, что и такие вот «цельные» грузы пока выводить на орбиту не требуется.

Читайте так же:
Интересные факты о солнечной энергии

И, повторимся, речь идет о технологии, которой уже несколько десятков лет. Да, конечно, сверхтяжелая ракета отличается от всего того, что использовало НАСА ранее, но разница не кардинальная.

А в случае ядерных ракет мы говорим о совершенно новых технологиях, которые разрабатывались ранее лишь в порядке чисто теоретических проектов. Проблемой будет даже создание относительно небольшой ракеты на ядерной тяге для полетов на орбиту. Сложно представить, сколько средств, ресурсов и времени понадобится для того, чтобы с нуля создать огромную ракету с ядерным реактором для полета на Марс. $110 млн, которые получило НАСА на проработку этого направления — просто капля в море. Полный бюджет проекта будет таким, что не то, что у НАСА, у всей страны денег не хватит.

И нельзя забывать о временных рамках — та же SLS разрабатывается много лет, сроки постоянно срываются, переносятся и т.п. И до сих пор ракета никуда полететь не может — буквально месяц назад SLS тестировали, проводя огневые испытания, но те прошли неудачно. Спустя минуту двигатели отключились из-за отказа одного из них.

Так что ядерные ракеты пока так и останутся красивой теорией. А если у Маска все пройдет хорошо, и его проект по полету на Марс будет реализован, то и необходимости в «ядерных полетах», скорее всего, уже не будет.

Учёные из США предложили использовать бактерии для производства ракетного топлива и кислорода на Марсе

Команда учёных Технологического института Джорджии разработала концепцию, предусматривающую доставку на Марс микроорганизмов для производства ракетного топлива и окислителя — жидкого кислорода. Бактерии будут вырабатывать необходимые для возвращения на Землю компоненты из углекислого газа, содержащегося в атмосфере Красной планеты.

Автор: GooKingSword, pixabay.com

Автор: GooKingSword, pixabay.com

Приблизительно к концу текущего десятилетия в соответствии с планами NASA с Марса должна взлететь ракета, несущая около 0,5 кг геологических образцов, собранных марсоходом Perseverance. Хотя ракета доставит образцы только на орбиту планеты, где их подберёт другой космический корабль, её вес составит около 400 кг, большая часть придётся на твёрдое ракетное топливо.

Нетрудно представить, сколько топлива может понадобиться будущим, намного более амбициозным марсианским пилотируемым миссиям. По данным специалистов университета т. н. Марсианскому взлётному кораблю (MAV) потребуется 30 т метана и жидкого кислорода для доставки 500 кг полезной нагрузки на орбиту. Метан органического происхождения в атмосфере планеты предсказуемо отсутствует и его придётся доставлять с Земли. Это означает, что полезная нагрузка, доставляемая с родины человечества, составит 500 т и обойдётся в $8 млрд для транспортировки дополнительного топлива.

Для снижения затрат и высвобождения места для чего-то более полезного, чем топливо для обратного полёта, команда из Технологического института Джорджии под руководством Ника Крюэра (Nick Kruyer) намерена использовать цианобактерии и генно-модифицированные кишечные палочки в производстве альтернативного топлива, известного, как 2,3-бутандиол (CH3CHOH)2. Последний применяется на Земле для производства синтетической резины и других полимеров. Помимо того, что это даст достаточное количество кислорода для ракеты, предложенная технология обеспечит 44 т дополнительного кислорода для использования в других целях.

Основная идея заключается в том, что перед запуском основной миссии будут отправлены несколько предварительных, с образцами микроорганизмов и пластиковыми материалами, необходимыми для строительства фотобиореакторов площадью с четыре футбольных поля.

В этих реакторах солнечный свет и углекислый газ из марсианской атмосферы обеспечат благоприятную среду для развития цианобактерий, которые потом, с помощью ферментов, будут преобразоваться в сахара. Полученное сырьё будет «скармливаться» бактериям кишечной палочки, в свою очередь, ответственным за выработку 2,3-бутандиола и кислорода, которые позже будут разделены с помощью относительно несложной техники.

По расчётам учёных, процесс будет на 32 % эффективнее, чем промышленное химическое производство кислорода с помощью катализатора с использованием доставленного с Земли метана. При этом необходимое оборудование будет втрое тяжелее, пока разрабатываются более лёгкие решения.

По словам участника проекта Мэтью Рилффа (Matthew Realff), ещё предстоит доказать, что цианобактерии могут выращиваться в марсианских условиях. Следует учесть разницу солнечных спектров в атмосферах планет с учётом отдалённости Солнца и недостаточной атмосферной фильтрации света — большое количество ультрафиолета может фатально навредить цианобактериям.

голоса
Рейтинг статьи
Ссылка на основную публикацию