100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Насколько далека от нас космическая пыль?

Что такое космический мусор и чем он опасен для жителей Земли

Фото: Shutterstock

Космический мусор представляет собой твердые отходы космической деятельности. Сюда относятся неработоспособные спутники, запущенные человеком за 60 лет освоения космоса, вторая и третья ступени ракета-носителя (первая обычно падает в Тихий океан), разгонные блоки и фрагменты спутников после взрыва или столкновений, например, фрагменты обшивки — так появляется космический мусор.

Ученые подсчитали, что сейчас в космосе находится почти 128 млн кусков космического мусора размером более 1 мм и 34 тыс. частиц размером более 10 см. Все, что меньше 1 мм подсчитать крайне трудно, некоторые ученые говорят о триллионах таких частиц. Около 3 тыс. спутников вышли из строя из-за мусора и сами превратились в космический мусор.

Астрономы могут отследить только крупные фрагменты, так как скорость частиц может доходить до 14 км/с (зависит от орбиты). Россия и США сейчас наблюдают за 23 тыс. космических объектов размером от 10 см, каталогизировано же и того меньше — 17 тыс. При этом 95% каталога космических объектов составляет космический мусор.

Проблемы и угрозы

Степень опасности космического мусора определяется в основном тремя факторами:

  1. как долго космический мусор находится на орбите;
  2. какова скорость движения;
  3. велика ли сложность утилизации космического мусора.

Главная проблема мусорного кризиса в космосе — выход из строя работающих спутников при столкновении с космическим мусором. Из-за больших скоростей опасность представляют даже частицы менее 1 см, они могут пробить противометеоритную защиту орбитальной станции. При столкновении с объектом более 10 см любой космический аппарат или станция гарантированно уничтожаются.

В мае 2016 года в Международную космическую станцию (МКС) влетела частица космического мусора размером в сотые доли миллиметра и оставила на МКС скол диаметром около 7 мм. Чтобы не допустить более разрушительных последствий МКС приходится регулярно менять свою орбиту, уворачиваясь от мусора.

Скол на иллюминаторе МКС, 2016 год

Хоть мелкий мусор и не влечет за собой катастрофических последствий, однако его опасность заключается в гигантском объеме, неконтролируемом распределении в пространстве, огромной скорости и абсолютной непредсказуемости столкновений.

Сейчас около 99% потенциально опасных объектов вовсе не контролируется из-за их малых размеров и огромных скоростей.

Что такое синдром Кесслера и при чем он здесь

Ученые предполагают, что в какой-то момент мы больше не сможем выводить новые спутники на орбиты, так как они будут полностью заняты космическим мусором. Это может произойти из-за каскадного эффекта, который называется синдромом Кесслера:

стремительно растущий объем космического мусора будет производить другой мусор, а он, в свою очередь, по цепной реакции — новый мусор.

Общий характер каскадного эффекта такой же, как и у ядерной цепной реакции. Таким образом орбиты будут заняты, и человек больше не сможет запускать летательные аппараты по причине неконтролируемых столкновений.

Вероятность столкновений на любой орбите растет приблизительно пропорционально квадрату количества космических объектов. Есть ученые, которые считают, что каскадный эффект уже начался в некоторых орбитальных областях и для некоторых классов космического мусора (на высотах 900–1000 км и 1500 км).

Наиль Бахтигараев, старший научный сотрудник Института астрономии РАН:

«Где-то десять лет назад поднялся шум из-за эффекта Кесслера. Считалось, что он вот-вот начнется, но затем его отложили. Когда он все-таки начнется, зависит от уровня развития науки и технологий. Но даже если мы будем предпринимать технические мероприятия по уничтожению мусора, то этот момент все равно настанет. Сейчас мы лишь замедляем и отдаляем его»

Читайте так же:
10 важных сигналов мозга о том, что он стареет быстрее вашего тела: рассказываем главное

10 февраля 2009 года на расстоянии 790 км над уровнем моря столкнулись два спутника: американский Iridium-33 и российский «Космос-2251». В результате летательные аппараты разлетелись на 600 осколков размером более 5 см и несколько тысяч более мелких.

Впрочем, на сегодняшний день столкновения работающих летательных аппаратов с космическим мусором на орбите происходят довольно редко благодаря работающим системам слежения. Существует другая проблема — взрывы старых спутников, на борту которых осталось топливо и отработанные аккумуляторы. Под различного рода воздействием они могут повреждать работающие спутники сильнее, чем обычные столкновения.

Утилизация космического мусора

Говорить о том, что космический мусор станет серьезной проблемой, начали еще в 1960-е годы, на заре освоения космоса. Но до сих пор не придумали реальной возможности массово удалять мусор с околоземных орбит. «Существуют программы по удалению космического мусора, но они единичные и не решают проблему. Удалить можно только крупный мусор, то есть более 20 см, с объектами менее 10 см возникают большие сложности», — говорит Бахтигараев из Института астрономии РАН.

Фото:Pixabay

Так как существующие технологии не способны избавить космос от мусора, то космические агентства начали уделять внимание профилактике. Для новых аппаратов предъявляют стандарты, например, на борту космических аппаратов закладывают ресурс, чтобы они могли уходить от столкновений с мусором. Также их снабжают броней, которая защищает космического мусора, но только от мелкого.

На сегодняшний день работающей технологией по утилизации космического мусора является увод старых спутников на соседние орбиты. Это можно сделать с помощью аппаратов-захватчиков, которые буксируют мусор на орбиты для захоронения. Также отработанные спутники могут сами уходить со своих мест на остатках топлива. Но массово эти методы не применяются.

Считается, что космический мусор не падает на Землю, но это не совсем так. Для отработанных крупных спутников и грузовых кораблей на Земле в Тихом океане существует свое кладбище, где их затапливают, так как они не сгорают в атмосфере. Это место расположено в южной части Тихого океана около точки Немо, самого удаленного от суши места на Земле. Над этим местом запрещено летать и проплывать кораблям. Так проблема космического мусора превращается в проблему земного мусора. С 1971 по 2016 года там захоронили минимум 260 аппаратов.

Сейчас перед астрофизиками стоит задача, как избавиться от мусора на геостационарной орбите или поясе Кларка. Она находится непосредственно над экватором Земли на расстоянии 35 786 км. Эта орбита очень привлекательна для запуска спутников, так как на ней летательные аппараты требуют меньше топлива и охватывают значительно больше поверхности Земли, чем на других орбитах. Однако количество точек стояния спутников на геостационарной орбите ограничено — их около 180. Помимо очистки геостационарной орбиты, важное значение имеет удаление космического мусора в окрестностях МКС, так как станция является дорогостоящей и очень уязвимой.

Космический мусор: карты и модели

Чтобы убедиться, что наша планета окружена мусором, не надо лететь в космос. Ученые смоделировали то, как выглядят околоземные орбиты. Один из таких сайтов — «Гид в мире космоса». Карта показывает соотношение работающих спутников к тем, которые уже стали мусором.

Видео от Европейского космического агентства демонстрирует, насколько много мусора находится вокруг Земли. В начале модель показывает обломки больше 1 м, а в самом конце — количество космических объектов от 1 мм:

Читайте так же:
Как авиатехники выкручивают проблемные винты?

Что космическая пыль может рассказать о Солнечной системе и Земле

Вот так под микроскопом выглядят микрометеориты
Каждый год на квадратный метр поверхности Земли приходится около 10 частичек внеземного вещества — космической пыли. «Это означает, что пыль везде. На улицах, в вашем доме, возможно, даже на вашей одежде», — говорит Мэтью Гендж, ученый из имперского колледжа Лондона. Он специализируется как раз на гостях из космоса — микрометеоритах.

Круглые и разноцветные, микрометеориты отличаются друг от друга. Но до 1870 года их никто не замечал, пока экспедиция HMS Challenger не обнаружила их на дне Тихого океана. На суше обнаружить нечто подобное сложнее, поскольку гостей из космоса быстро прячет обычная пыль.

В течение веков ученые считали, что странные объекты со дна морей и океанов — расплавленные частицы с поверхности более крупных метеоритов, которые отходят от основого объекта во время падения на Землю. Но на самом деле это не всегда так — большая часть космической пыли попадает к нам не с поверхности метеоритов, а с космических скал, которые находятся в миллионах километров от Земли. Эти частицы оставляют крохотные сообщения, которые расшифровывают ученые. Гендж — один из них, он занимается этим уже в течение 30 лет.

Он начал работать в тот момент, когда ученые узнали, что в Антарктиде много микрометеоритов. Около 10% пыли, встречающейся во льдах Антарктиды попала к нам из космоса. Поэтому Гендж занялся изучением этой пыли, ее состава и морфологии. Специалистов по микрометеоритам немного, это небольшое и тесное сообщество. Но Гендж несколько выделяется — дело в том, что он смог научиться интерпретировать информацию, которую несет космическая пыль. Причем не столько о происхождении пыли, сколько о Земле в разные моменты истории нашей планеты.


Космическая пыль в сосуде. Ее собрали в Антарктиде в 2006 году

Сейчас Гендж изучает образцы пыли у себя дома, поскольку работа в лаборатории еще не восстановлена из-за пандемии. Он взял собранную пыль, микроскоп, чего вполне достаточно для работы.

Почему именно космическая пыль

Астрономы обычно уделяют максимум внимания звездам и галактикам. Все потому, что они очень заметны, это во-первых, и дают массу информации о космосе, во-вторых. Но пыль, хотя и совсем незаметна, может дополнить наши знания о космосе и том, что нас окружает. Ведь частички космического вещества содержат огромное количество информации о том, откуда они и как попали к нам. Пыли в космосе огромное количество, а на Землю она попадает гораздо чаще, чем метеориты.

Откуда к нам попадает пыль

Несмотря на то, что ученые уже очень давно знают о космической пыли, до 1990-х астрономы почти ничего не знали о том, что является генератором пыли в Солнечной системе. Французские ученые, например, считали, что пыль приходит к нам с комет. Но в итоге удалось понять, что микрометеориты (т.е. пыль) попадает к нам с астероидов. Большая их часть по составу схожа с метеоритами типа углистые хондриты.

Ну а что можно узнать при помощи микрометеоритов?

Они дают информацию, которую сложно или невозможно получить при изучении обычных метеоритов. Кроме того, попадание метеорита на нашу планету — случайность. Для этого нужно, чтобы от астероида откололся кусок, потом этот кусок двигался бы по орбите, отличной от орбиты астероида, и все факторы сошлись бы таким образом, чтобы метеорит упал на Землю.

Читайте так же:
24 привычки, от которых стоит избавиться — разбираем вопрос

С пылью все похоже и, в то же время, немного иначе. Да, для того, чтобы частица пыли оторвалась от поверхности какого-либо объекта, нужно внешнее воздействие. Но потом пыль движется под действием солнечного света. Этот процесс называется эффектом Пойнтинга-Робертсона. Эффект был впервые описан в 1903 году известным британским физиком Джоном Генри Пойнтингом, который объяснил его в рамках эфирной теории электромагнетизма. Правильное объяснение эффекта с точки зрения общей теории относительности дал Говард Перси Робертсон в 1937 году.

Мэтью Гендж во время изучения космической пыли у себя дома в Лондоне
Так вот, космическая пыль по спирали движется к Солнцу. Траектория движения пересекает орбиты планет, так что вероятность захвата пыли какой-либо планетой, включая Землю, достаточно высокая. В целом, эта вероятность гораздо выше вероятности попадания метеорита на Землю. Кроме того, космическая пыль, микрометеориты, попадает к нам из всех уголков Солнечной системы, так что информации можно извлечь очень много.

В целом, один метеорит дает большое количество информации о небольшом количестве объектов. А космическая пыль дает небольшой объем информации о многих объектах. Ну а все это в комплексе предоставляет ученым огромный массив данных.

А куда еще падает космическая пыль?

Конечно же, не только на Землю. Она попадает на Венеру, Марс, Юпитер и другие объекты. Что касается Земли, то есть предположение, что космическая пыль — один из факторов, который привел к появлению жизни. Микрометеориты все время приносят на нашу (и другие) планету аминокислоты — основу жизни. Конечно, чтобы из аминокислот возникла жизнь, нужно много больше, чем просто увеличение концентрации аминокислот. Тем не менее, это один из важных факторов. И, к слову, микрометеориты — основной источник органических веществ для Марса.

Кроме того, космическая пыль играет важное значение для цепочек питания (трофические цепи) глубоководных биосистем. Некоторые регионы океана настолько сильно удалены от суши, что организмы, которые живут там, нуждаются в ином источнике некоторых элементов. Это может быть, например, железо — и именно микрометеориты приносят железо этим организмам.

Что она позволяет узнать о Солнечной системе?

Состав различных областей системы. Так, во время ее формирования состав разных «слоев» менялся. И чем больше времени проходит, тем сильнее изменения. Когда ученые исследуют метеориты и микрометеориты, они стараются понять, в каком месте «диска» Солнечной системы образовался объект и как меняется состав и структура слоев этого диска.

Каждая планета формировалась в уникальных условиях, поэтому они отличаются друг от друга. Понимание этих условий помогает понять, как могут выглядеть планеты из других звездных систем и каков принцип их образования.

А что космическая пыль помогает понять о Земле?

В первую очередь, это атмосферный состав планеты в разные эпохи. Когда очень горячий объект проходит через атмосферу, он с ней взаимодействует. Изучая этот объект, можно определить особенности атмосферы в определенный период времени.

Одно из исследований, опубликованных в Nature, раскрывает результаты изучения микрометеоритов, пыли, выпавшей на Землю 2,7 млрд лет назад. Эти объекты нашли в песчанике в Австралии и изучили. В итоге удалось понять, какой была атмосфера в тот период времени.

Кусок раскаленного металла, помещенный в атмосферу, поглощает кислород. И это отличный инструмент для измерения состава верхних слоев атмосферы Земли. Если ученые смогут изучить микрометеориты на Марсе, то получат изрядный объем данных об атмосфере этой планеты в прошлом.

Читайте так же:
Полка и письменный стол в стиле Лофт

Но пока что мы изучаем историю Земли. Так, до изучения микрометеоритов из австралийского песчаника считалось, что 2,7 млрд лет назад кислорода в атмосфере было очень мало. Но, изучив эти объекты мы поняли, что нет — его было много.

Правда, на изучение космической пыли нужно очень много времени. Ученый, о котором говорилось выше, до сих пор исследует образцы, собранные им в 2006 году, настолько это долгий процесс. Сбор образцов, к слову, занял всего 5 минут.

Что касается Антарктики, то там удалось собрать около 6 кг пыли, и в этом объеме оказалось около 3000 самых разных микрометеоритов.

Космическая пыль – из чего она состоит и откуда берется в космосе

Космическая пыль — под этим общим названием объединяют громадное количество мельчайших частиц – молекул газа, каменной и ледяной крошки, металлических крупинок, свободно дрейфующих в космическом пространстве. Обнаружить их можно в любой точке вселенной, хотя от места к месту, концентрация космической пыли заметно меняется.

Как была обнаружена космическая пыль

Хотя мы убедились, что космический вакуум не так пуст, как об этом считает обыватель, мы все же не можем не отметить, что и “наполненным” его назвать можно с трудом. Водород, кальций, железо – все это есть в космической среде, однако в таких количествах, что без точного оборудования бесполезно и пытаться искать.

Чего удивляться тому факту, что аж до 1930 года большинство ученых было убеждено в том, что в пространстве между звездами, вообще нет никакой среды, которая бы вызывала заметное поглощение звездного света. Поэтому при определении расстояния до какой-либо звезды пользовались известным законом ослабления блеска источника света пропорционально квадрату расстояния до него. Однако, поступая таким образом, ученые совершали ужасную ошибку.

Дело в том, что это положение, справедливое в случае совершенно прозрачного пространства, оказывается неправильным в случае наличия поглощающей среды. А на то, что пространство между звездами не вполне прозрачно, указывал еще сто лет назад выдающийся русский ученый Василий Яковлевич Струве, однако его идеи современниками оценены не были.

Облако космической пыли

Облако космической пыли

К счастью, в начале 1930-х г.г., правота ученого была доказана. Космос теперь уже никто не называл совершенно прозрачной пустотой, а виной искажений не принимаемых в расчет учеными прошлого стало ни что иное, как космическая пыль.

Как распределена космическая пыль в пространстве и из чего она состоит?

Космическая пыль не только вносит искажения при определении расстояний в космосе, но также искажает и наши представления о звездах. Явление покраснения звезд, благодаря которому звезды кажутся нам сравнительно холоднее, чем они есть в действительности – целиком “заслуга” космической пыли.

Космическая (или межзвездная) пыль не представляет собой среду равномерной плотности и состоит из отдельных облаков космической пыли, средние размеры которых таковы, что свет от одного их края до другого идет в течение десяти лет, то есть размеры этих облаков значительно больше среднего расстояния между звездами.

Уже давно было известно, что в мировом пространстве между звездами существуют огромные облака разреженной материи, из которых одни являются газовыми, а другие пылевыми. Облака космической пыли светят отраженным светом тех звезд, которые расположены поблизости от них.

Однако в вопросе о том, есть ли что-нибудь общее между этими светлыми пылевыми туманностями и поглощающей межзвездной средой, которая, тоже состоит из облаков, не было полной ясности.

Читайте так же:
Как стресс вредит здоровью

Некоторые особенности больших облаков темной пыли, так называемых темных туманностей, обнаруживаются благодаря тому, что они поглощают свет находящихся за ними звезд и на сияющем фоне Млечного пути образуют как бы провалы полной черноты.

В итоге, было доказано, что все различия между “темными” и “светлыми” пылевыми туманностями состоят лишь в том, что вторые находятся по соседству с очень яркими звездами, которые освещают их достаточно сильно, для того чтобы они были видимы, а первые такой “подсветки” лишены.

Таким образом, никакого существенного различия между светлыми и темными облаками космической пыли не оказалось, и вопрос о том, какими они нам представляются, зависит исключительно от случайного расположения их по отношению к ярким звездам.

Новости

Время работы: с 10:00 до 21:00,
Выходной день: вторник
«Ретро-кафе»: в дни работы Планетария с 10:00 до 20:00.

Музей «Лунариум» временно закрыт

+7 (495) 221-76-90
АО «Планетарий» © 2017 г. Москва, ул.Садовая-Кудринская, д. 5, стр. 1

Космическая пыль

Космическая пыль – это частицы твёрдого вещества размером от нескольких молекул до десятков микрон, находящиеся в космическом пространстве. По местоположению во Вселенной она делится на межгалактическую, галактическую, межзвёздную, межпланетную, околопланетную, астероидную, кометную, пыль Пояса Койпера и др.

В отношении космической пыли, выпадающей на Землю, существует некоторая терминологическая неопределенность, так как среди специалистов широко используется термин «микрометеорит», как синоним космической пыли. Академик В.Г. Фесенков называл микрометеоритами те частицы межпланетной пыли, которые в силу их малой массы не нагреваются при прохождении через атмосферу и достигают поверхности Земли в неизменном виде. Последнее обстоятельство делает проблему изучения космической пыли очень важной для понимания происхождения Солнечной системы.

Микрометеорит

Впервые следы космической пыли на Земле обнаружены в красных глубоководных глинах английской экспедицией под руководством Меррея, исследовавшей дно Мирового океана на судне «Челленджер» в 1873-76 годах. С глубины 4300 м в южной части Тихого океана были подняты образцы железомарганцевых конкреций, на которых были обнаружены магнитные железные микросферы, позже получившие название «космические шарики Меррея». Уже в наше время выяснилось, что эти шарики на 90% состоят из металлического железа, на 10% – из никеля, а их поверхность покрыта тонкой корочкой оксида железа. В России в первой половине ХХ века на необходимость изучения космической пыли указывал В. И. Вернадский.

Интерес исследователей к металлическим микросферам привел к тому, что их стали обнаруживать в осадочных породах разного возраста и происхождения, на дне океанов, озер, льдах полярных областей и Гренландии, метеоритных кратерах.

Микрометеориты-из-плейстоценовых-отложений-озера-Байкал

Происхождение космической пыли — предмет дискуссий. Часть исследователей полагает, что космическая пыль это реликты первичного протопланетного облака. Другая часть учёных её образование связывает с разрушением астероидов и комет. Весьма важным является вопрос о количестве космической пыли, поступающей на Землю. Несмотря на большое число публикаций на эту тему, точный ответ на этот принципиальный вопрос в настоящее время отсутствует, так как очень велик разброс данных: от 30-60 тонн в день до100 тысяч тонн в год. Таким образом, дальнейшее изучение вещества космической пыли будет способствовать решению многих теоретических вопросов. В первую очередь пониманию процессов эволюции космических тел, Земли и Солнечной системы в целом.

голоса
Рейтинг статьи
Ссылка на основную публикацию