100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как выглядел первый GPS для самолетов

Американская навигационная спутниковая система GPS. История и развитие проекта

Ракета-носитель Falcon 9 с навигационным спутником GPS III Craig Bailey/FLORIDA TODAY via USA TODAY NETWORKSpace

ТАСС-ДОСЬЕ. 6 ноября 2020 года в 02:24 мск американская компания SpaceX осуществила запуск с космодрома на мысе Канаверал (штат Флорида) ракеты-носителя Falcon 9 с навигационным спутником GPS III. ТАСС подготовил материал о спутниковой системе GPS.

Основные сведения, история проекта

GPS (Global Positioning System, "Система глобального позиционирования") — американская глобальная навигационная спутниковая система. Предназначена для обеспечения навигационной информацией военных и гражданских потребителей. Позволяет в режиме реального времени определять местоположение и скорость объектов в любом месте Земли (исключая приполярные области), а также в околоземном космическом пространстве.

Навигационная система была разработана и эксплуатируется Министерством обороны США (заказчик — Военно-воздушные силы). Работы по ее созданию начались в 1973 году в рамках военной программы DNSS (Defense Navigation Satellite System, "Оборонная навигационная спутниковая система"), впоследствии переименованной в NAVSTAR (Navigation System using Timing And Ranging, "Навигационная система определения времени и дальности"), а затем в GPS.

В 1983 году спутниковую систему NAVSTAR, создававшуюся как военный проект, было решено открыть для гражданских пользователей. Поводом для рассекречивания системы послужила потеря южнокорейского пассажирского самолета Boeing 747. 1 сентября 1983 года лайнер, следовавший рейсом из Нью-Йорка в Сеул с 246 пассажирами и 23 членами экипажа на борту, отклонился от маршрута, углубился в воздушное пространство СССР, где был принят за самолет-разведчик, сбит ракетой с советского истребителя-перехватчика Су-15 и разбился в океане близ острова Монерон к юго-западу от Сахалина. Чтобы избежать подобных инцидентов, президент США Рональд Рейган дал разрешение на использование системы для гражданских целей, но с пониженной точностью определения местоположения (по сравнению с военными).

9 декабря 1993 года NAVSTAR в составе 24 спутников была принята на вооружение и стала использоваться для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.

17 июля 1995 года ВВС США объявили о полной боеготовности навигационной системы, обеспечивающей глобальное покрытие земного шара и передачу информации в круглосуточном режиме. В том же году доступ к NAVSTAR получили также гражданские потребители и началась ее коммерческая эксплуатация.

Спутники

В рамках совершенствования навигационной системы было создано несколько поколений спутников:

— Navstar (запускались в 1978-1985 годах);

— Navstar II (1989-1990);

— Navstar IIA (впоследствии GPS IIA; 1990-1997);

— GPS IIR (1997-2004);

— GPS IIR-M (2005-2009);

— GPS IIF (2010-2016);

— GPS III (2018 — н. в.).

В 1974 году генеральным подрядчиком по изготовлению спутников стала корпорация Boeing (Чикаго, штат Иллинойс). Она построила аппараты Navstar, Navstar II, Navstar IIA (GPS IIA), а также GPS IIF.

Спутники GPS IIR и их модернизированный вариант GPS IIR-M были разработаны и изготовлены компанией Lockheed Martin (Бетесда, штат Мэриленд). В мае 2008 года Lockheed Martin выиграла конкурс на строительство аппаратов третьего поколения (GPS III).

Расчетный срок службы первых навигационных аппаратов составлял 5-12 лет. Срок работы спутников третьего поколения увеличен до 15 лет. С помощью GPS III можно определять местонахождение с точностью до 1-3 м для гражданских пользователей (возможности спутников второго поколения — от 3 м до 10 м). Кроме того, аппарат последнего поколения обладает повышенной помехоустойчивостью.

Навигационная система

GPS включает в себя три сегмента: космический, управления и контроля, пользовательский.

Для полноценной работы навигационной системы необходимо иметь как минимум 24 действующих спутника (штатное количество — 32, включая резервные аппараты), вращающихся по круговым орбитам высотой 20,2 тыс. км в шести плоскостях.

Наземная часть состоит из сети станций по передаче сигнала GPS. Главная станция управления находится на базе ВВС Шривер в Колорадо-Спрингс (штат Колорадо).

Для гражданских пользователей необходим только навигатор или другой аппарат (мобильный телефон, смартфон, наручные электронные часы и др.) с GPS-приемником. Потребители, имеющие приемники GPS, пользуются навигационной системой бесплатно.

Статистика запусков

Для запуска навигационных спутников используются ракеты-носители Atlas V (с 2013 года), Delta IV (с 2010 года) и частная Falcon 9 (с 2018 года).

Первый спутник (Navstar) был запущен 22 февраля 1978 года ракетой Atlas, стартовавшей с базы ВВС США Ванденберг (штат Калифорния).

Всего по состоянию на 6 ноября 2020 года включительно на околоземную орбиту успешно выведены 74 спутника. Еще два аппарата были потеряны в результате аварий ракет Atlas (в декабре 1981 года) и Delta II (в январе 1997 года). Предыдущий запуск состоялся 30 июня 2020 года с мыса Канаверал, когда ракета Falcon 9 вывела в космос аппарат GPS III.

В настоящее время (с учетом запуска 6 ноября 2020 года) на орбите Земли находятся 33 спутника, в том числе девять GPS IIR, восемь GPS IIR-M, 12 GPS IIF и четыре GPS III. Из них 31 аппарат передает навигационные сигналы. Запущенный в марте 2009 года спутник GPS IIR-M временно выведен на техобслуживание.

Читайте так же:
Новые семь чудес света (видео)

Развитие GPS

Со временем вся орбитальная группировка системы GPS будет состоять из спутников третьего поколения, которые заменят устаревшие аппараты. По оценкам экспертов, обновление группировки навигационной системы обойдется примерно в $7,7 млрд.

Навигационные системы других стран

Навигационную спутниковую систему, также охватывающую всю планету, имеет Россия (ГЛОНАСС). В июне 2020 года Китай завершил формирование навигационной системы "Бэйдоу", способной работать в глобальном масштабе. В 2020 году Европейский союз планировал полностью развернуть глобальную навигационную систему Galileo, создаваемую во взаимодействии с Европейским космическим агентством. Кроме того, региональные системы спутникового позиционирования имеют Индия (NavIC) и Япония (QZSS).

Эволюция автомобильной навигации: от бумажных рулонов и перфокарт до беспилотников

Чем популярнее становились автомобили, тем дальше на них ездили. А в пути, конечно же, без карты не обойтись. Но останавливаться и разворачивать огромные бумажные атласы не всегда удобно, особенно если путь — долгий и изнуряющий. Еще в начале ХХ века британцы придумали наручные часы-навигатор, в которые вставлялся рулон с картами региона. Позже возникла идея установить под дорожное покрытие сотни магнитов, чтобы координировать движение. На появление первых спутниковых карт и бортовых систем потребовалось более полувека. Сейчас навигатор уже не является чем-то особенным или просто картой. Алгоритмы не только строят маршруты, но и подбирают интересные места и рассказывают о них водителю. Коммерческий директор AO «Навиком» Евгений Добринин рассказал историю о том, как изменялись системы автомобильной навигации и как обычные бумажные карты превратились в сложные гаджеты.

Читайте «Хайтек» в

Рулоны с картами и наручные часы

Первая половина XX века подарила нам первые навигаторы. Без GPS и голосовых подсказок, с небольшим набором карт они были скорее экспериментом, чем действительно полезной вещью, но всё же работали. И вдохновляли других разработчиков.

В 1920-х на рынке появился наручный навигатор The Plus Fours Routefinder. Это британское изобретение выглядело как наручные часы, только вместо циферблата и стрелок там была карта. В основе работы лежал очень простой принцип: карты были свернуты в рулон, прокручивать их приходилось вручную. Набор рулонов продавался в комплекте с навигатором, они охватывали основные автомобильные дороги Англии. Все крупные перекрестки были пронумерованы, чтобы водителю было легче заменить рулон, если предстояло куда-то свернуть. Также на этих картах было указано расстояние от одной точки маршрута до другой, а в конце стояло слово «Стоп».

В 1930 году предположительно в Италии был представлен первый автомобильный навигатор Iter Avto. В механическое устройство надо было вставить рулон с картой местности. Во время поездки она автоматически прокручивалась со скоростью, пропорциональной скорости движения автомобиля, потому что навигатор соединялся со спидометром специальным тросиком. Благодаря этому Iter Avto довольно точно показывал положение машины на местности. Если водитель сворачивал с дороги, то нужно было, как и в случае с Plus Fours Routefinder, заменить рулон с картой и найти на ней нужный перекресток.

Предвестники спутниковых систем: магниты, маячки и трансмиттеры

Автомобильный бум 60–70-х запустил первые исследовательские программы: люди пытались создать устройство, способное самостоятельно обнаруживать автомобиль на местности, а также анализировать дорожную ситуацию и учитывать ее при создании маршрута.

В 1966 году американская компания General Motors разработала устройство под названием DAIR — Driver Aid, Information and Routing (с англ. «Помощь, информация и навигация для водителей» — «Хайтек»). Оно, как и его механические предшественники, тоже работало без спутников, поэтому предполагалось, что под дорожное покрытие через каждые 3–5 миль (5–8 км — «Хайтек») будут установлены магниты. Также магниты планировали установить на всех крупных перекрестках. DAIR, взаимодействуя с этими магнитами, должен был с помощью зуммеров и световых индикаторов сообщать о приближении к поворотам и препятствиям. В качестве носителей информации в навигаторе использовались перфокарты. Гаджет предупреждал водителя об ограничениях скорости, о дорожных знаках и об опасностях на дороге: информация об этом выводилась на специальный экран, установленный на приборной панели. Также DAIR был оснащен радиотелефоном, с помощью которого можно было связаться со справочной службой или вызвать помощь.

Из-за плохой масштабируемости DAIR так и не стал массовым устройством. Однако предложенные инженерами General Motors принципы — позиционирование с помощью маяков, связь со спецслужбами — легли в основу современных навигаторов.

В 1973 году японское Агентство промышленной науки и техники предложило разработать систему, которая позволяла бы регулировать плотность автомобильного потока за счет перенаправления части трафика в объезд наиболее загруженных точек. Среди множества предложенных на конкурс проектов был выбран вариант компании Toyota — Comprehensive Automobile Traffic Control System (CACS). Он предполагал установку системы контроля на улицах городов и трансмиттеров в автомобилях. Вся информация о трафике собиралась и обрабатывалась компьютерами в контрольном центре. Благодаря этому обеспечивалась бы как односторонняя, так и двусторонняя связь, и система могла бы направлять транспортные средства по наиболее оптимальным маршрутам. Информацию водители получали с помощью специальных дисплеев и по радио. Первые испытания прошли в 1975-м, а в 1977 году, после более масштабных испытаний, специальная комиссия признала, что польза от системы перевешивает затраты, связанные с ее установкой, однако в 1979 году проект всё же свернули.

Читайте так же:
Дельфины: описание, виды, образ жизни, общение, как спят, как пьют, фото и видео

Первые навигаторы и появление GPS

К 80-м стало очевидно, что использование систем автомобильной навигации, агрегирующих информацию в контрольных пунктах и позиционирующих транспортные средства в пространстве с помощью специально установленных маяков, нерентабельно. Такие системы требовали больших материальных вложений, плохо масштабировались и практически не работали за пределами городов. Поэтому на первый план снова вышли автономные навигаторы.

В 1981 году японская компания Honda запатентовала в США первый коммерческий навигационный прибор для автомобиля — Electro Gyrocator. В нем использовался принцип инерциальной навигации: специальный датчик с газообразным гелием определял направление движения автомобиля, как гироскоп. Информацию о начале движения и об остановке Electro Gyrocator получал от коробки передач. Все данные обрабатывались аналоговым компьютером. В комплекте с прибором шел набор карт на прозрачной пленке. Перед началом движения водитель должен был выбрать карту, найти на ней начальную точку маршрута и вставить пленку в специальный отсек перед шестидюймовым кинескопным монитором. Перемещения автомобиля на этом экране показывала светящаяся точка. Устройство было очень дорогим, поэтому распространения не получило.

А в 1985 году американская компания Etak представила свой навигатор. Он умел определять положение автомобиля с помощью электронного компаса и специальных датчиков, крепившихся к неведущим колесам. Оцифрованные карты хранились на кассетах, которые можно было легко заменить во время движения. Информация выводилась на черно-зеленый векторный экран. Компания сама разработала всё техническое оборудование с нуля, и хотя проект не стал коммерчески успешным, наработки Etak впоследствии активно использовались в других проектах.

За несколько лет до этого, в 1983 году, после того как Советский Союз сбил вторгшийся в его воздушное пространство «Боинг» «Корейских авиалиний» (пилоты были дезориентированы), президент США Рональд Рейган разрешил использование системы GPS в гражданских целях во всем мире. Поначалу точность системы для гражданских потребителей была намеренно уменьшена, однако и такое не очень точное позиционирование повлияло на дальнейшую историю развития автомобильных навигаторов. Параллельно велись поиски нового носителя для карт.

Так, уже в 1987 Toyota выпустила на рынок навигатор, карты к которому были записаны на CD. Устройство было установлено на модель Toyota Crown, отдельно приобрести его было нельзя.

В 1990 году Mazda представила миру первый GPS-навигатор. Им были оснащены автомобили четвертого поколения Eunos Cosmo. Это, как и у Toyota, было встроенное устройство.

Toyota к 1992 году разработала еще одну новинку — навигатор с голосовыми подсказками. Он был установлен на Toyota Celsior.

В 1994 году GPS-навигаторы появляются и на европейском рынке. BMW и Phillips представляют совместно разработанное устройство в числе опций 7-Series в кузове E38. Навигатор оснащен цветным дисплеем.

Через год, в 1995-м, GPS-навигаторы выходят и на американский рынок. Устройство с поэтичным названием GuideStar — «Путеводная звезда» — было установлено в некоторые модели Oldsmobile.

В этом же году японская Acura представила навигатор с картами на жестком диске.

Спустя два года, в 1997-м, японская компания Alpine представила свою версию мультимедийного устройства Alpine CVA-1005 со встроенным GPS-навигатором. Устройство можно было установить на любой автомобиль, а карты к навигатору записывались на CD. Каждый диск, несмотря на большой для того времени объем хранимой информации, покрывал небольшую площадь — например, всего несколько штатов.

В 1998 году компания Garmin выпустила Street Pilot, первый портативный автомобильный навигатор с монохромным экраном и предзагруженными картами. Устройство можно было закрепить на панели или на лобовом стекле. Чуть позже появилась улучшенная версия — с цветным дисплеем.

Появление ГЛОНАСС и Google Карт

2000 год запомнился тем, что Билл Клинтон отменил ограничения, которые накладывались на использование GPS в гражданских целях. На рынке навигаторов тем временем продолжались поиски оптимального носителя информации, а также дополнительных преимуществ, которые привлекли бы клиентов к продукции конкретного производителя.

В 2006 году навигаторы выходят на российский рынок. Первой компанией, предложившей эти устройства для нашей страны, стала BMW, выпустившая на CD карты Москвы и Подмосковья. Правда, они были не очень подробными, и вместо русского в них использовалась транслитерация.

Через год, в 2007-м, на рынке появился первый гражданский навигатор, поддерживающий и американскую GPS, и российскую ГЛОНАСС. Это был российский Glospace.

Примерно тогда же Toyota предпринимает попытку решить проблему недостаточно оперативного обновления карт и предлагает японскому рынку Map on Demand — обновление карт по запросу пользователя с помощью домашнего интернета. Японцы получили возможность легко и быстро загружать свежие карты в свои устройства.

Читайте так же:
Оптимизирована переработка резиновых покрышек в графен

А уже в 2008 году Toyota представила первые навигационные системы, связанные с системой помощи при торможении и с работой адаптивной подвески. Они подсказывали водителю, когда следует тормозить, основываясь на данных карт, а также регулировали подвеску.

Второе десятилетие XXI века в сфере автомобильной навигации принесло новые коллаборации, а также попытки интегрировать навигаторы в системы, прежде никак с ними не связанные.

Так, в 2011 году компания Audi представила навигационный модуль с картами Google, которые загружались из интернета. У водителей появилась возможность выбрать способ представления информации на дисплее. Они больше не были ограничены схематичным изображением местности.

В 2013 году компания Mercedes-Benz объявила о заключении соглашения с Garmin. Вместе они разработали навигационную систему, полностью интегрированную в информационно-развлекательный модуль автомобиля. Первой была представлена двухдисплейная бортовая система Garmin с трехмерными картами. Она устанавливалась в S-Class Coupe. А в CLA Coupe к системе навигации можно было подключать смарт-часы Vivoactive от Garmin, они постоянно отслеживали пульс водителя и оценивали его состояние.

Эти разработки позволили Mercedes-Benz в 2019 году представить функцию управления комфортом ENERGIZING: она с помощью музыки, света и других систем, отвечающих за комфорт в автомобиле, улучшает качество поездки. А если к этой системе подключить часы Mercedes-Benz Vívoactive 3 или другое совместимое устройство Garmin, то ENERGIZING подскажет, какую программу лучше выбрать, оценив личные показатели водителя, такие как уровень стресса или качество сна.

Компания Jaguar в 2014 году представила систему дополненной реальности Follow-me Ghost Car Navigation, которая проецирует на лобовое стекло различную информацию, необходимую для водителя, а также силуэт «машины-призрака» — она показывает, куда нужно ехать. Водителю достаточно следовать за ней, чтобы добраться до пункта назначения.

Эксперты полагают, что создатели систем навигации постараются создать беспилотники. И когда управление возьмет на себя техника, развитие навигаторов выйдет на новый виток: в этих системах будет расти количество и качество infotainment-функций.

По данным консультантов PWC, уже к 2021 году сегмент infotainment станет третьим по своему потенциалу — после обеспечения безопасности и поддержки автономного вождения — с оценочным объемом 13,4 млрд евро. Скорее всего, по мере развития беспилотных технологий решения в области connected cars и навигации станут более разнообразными. Верны ли прогнозы экспертов? Узнаем совсем скоро.

Аэронавигация: как все устроено

Казалось бы, быстрее и удобнее всего лететь по прямой между двумя аэропортами. Однако на самом деле по кратчайшему пути летают только птицы, а самолеты — по воздушным трассам. Воздушные трассы состоят из отрезков между путевыми точками, а сами путевые точки — это условные географические координаты, имеющие, как правило, определенное легко запоминаемое название из пяти букв, похожее на слово (обычно латиницей, но в русскоязычных используется транслитерация). Обычно это «слово» ничего не обозначает, например, NOLLA или LUNOK, но иногда в нем угадывается название близлежащего населенного пункта или какого-то географического объекта, например, точка OLOBA расположена недалеко от города Олонец, а NURMA — это окрестности деревни Нурма.

Маршрут строится из отрезков между точками для упорядочивания воздушного движения: если бы все летали произвольно, это сильно бы осложнило работу диспетчеров, поскольку было бы очень сложно предугадать, где и когда окажется каждый из летящих самолетов. А тут все раз — и летят друг за другом. Удобно! Диспетчеры следят, чтобы самолеты летели на расстоянии не более 5 километров друг от друга, и если кто-то кого-то нагоняет, его могут попросить лететь чуть медленнее (или второго — чуть быстрее).

В чем секрет дуги?

Почему же тогда летают по дуге? На самом деле это иллюзия. Маршрут даже по трассам довольно близок к прямому, а дугу вы видите только на плоской карте, потому что Земля-то круглая. Проще всего убедиться в этом, взяв глобус и натянув прямо по его поверхности нитку между двумя городами. Запомните, где она пролегает, а теперь попробуйте повторить ее маршрут на плоской карте.

Есть, правда, еще один нюанс, касающийся трансконтинентальных перелетов. Четырехдвигательные самолеты (Boieng-747, Airbus A340, A380) могут летать по прямой. А вот более экономичным двухдвигательным (Boeing-767, 777, Airbus A330 и пр.) приходится делать крюк из-за сертификаций ETOPS (Extended range twin engine operational performance standards). Они должны держаться на расстоянии не далее определенного времени полета до ближайшего запасного аэродрома (как правило, 180 минут, но бывает и больше — 240 или даже 350), и в случае отказа одного двигателя сразу же отправляться туда для аварийной посадки. Получается действительно полет по дуге.

Чтобы увеличить «пропускную способность» трассы, используют эшелонирование, то есть, разводят самолеты по высоте. Конкретная высота полета и называется эшелоном, или, по-английски, Flight Level — «уровень полета». Сами эшелоны так и называются — FL330, FL260 и т.п., число обозначает высоту в сотнях футов. То есть, FL330 — это высота в 10058 метров. В России до недавного времени использовали метрическую систему, поэтому пилоты до сих пор по привычке говорят: «Наш полет пройдет на высоте десять тысяч метров», но сейчас тоже перешли на международную футовую.

Читайте так же:
Почему возникает морская болезнь? Причины, как избавиться, фото и видео

Как набирают высоту?

«Четные» эшелоны (300, 320, 340 и т.п.) используются при полетах с востока на запад, нечетные — с запада на восток. В некоторых странах эшелоны делятся между четырьмя сторонами света. Смысл прост: благодаря этому между самолетами, летящими навстречу друг другу, всегда будет как минимум 1000 футов по высоте, то есть, более 300 метров.

А вот разница во времени полета с востока на запад и с запада на восток не имеет к эшелонам никакого отношения. И к вращению Земли тоже, потому что атмосфера вращается вместе с планетой. Все просто: в Северном полушарии ветры дуют чаще с запада на восток, поэтому в одном случае скорость ветра прибавляется к скорости самолета относительно воздуха (она условно постоянна), а в другом — вычитается из него, поэтому скорость относительно земли разная. А на эшелоне ветер может дуть со скоростью и 100, и 150, и даже 200 км/ч.

Как работает навигация?

Еще совсем недавно летчики умели ориентироваться в том числе по Солнцу, Луне и звездам, и на старых самолетах для этого даже были окошки в верхней части кабины. Процесс был довольно сложным, поэтому в экипажах присутствовал еще и штурман.

В аэронавигации используются наземные радиомаяки — радиостанции, посылающие в эфир сигнал на известной частоте из известной точки. Частоты и точки обозначены на картах. Настроив бортовой приемник со специальной «круговой» антенной на нужную частоту, можно понимать, в каком направлении от вас находится радиомаяк.

Если маяк самый простой, ненаправленный (NDB, non-directional beacon), то больше узнать ничего нельзя, но по изменению направления на этот маяк при известной скорости можно вычислить свои координаты. Более продвинутый азимутальный маяк (VOR, VHF Omni-directional Radio Range) тоже имеет круговые антенны и поэтому с его помощью можно определить магнитный пеленг, то есть, понять, каким курсом вы относительно этого маяка двигаетесь. Дальномерный маяк (DME, Distance Measuring Equipment, не путать с аэропортом Домодедово), работающий по принципу радара, позволяет определить расстояние до него. Как правило, азимутальные и дальномерные маяки (VOR/DME) устанавливаются в паре.

Для определения высоты используется высотомер, работающий по принципу барометра: чем выше атмосферное давление, тем, значит, меньше высота. Однако атмосферное давление постоянно меняется в одной и той же точке, поэтому в каждом аэропорту пилоты корректируют высотомеры в соответствии с текущей сводкой погоды. А вот на эшелонах все выставляют условное давление в 29,92 КПа, так что высота известна не точно, но это и не нужно — главное, чтобы у всех самолетов она отображалась одинаково, что и достигается.

Используется и GPS-навигация. При этом на большинстве современных самолетов установлены передатчики ADS-B (Automatic dependent surveillance-broadcast — автоматическое зависимое наблюдение-вещание). С их помощью самолет примерно раз в секунду передает в эфир на частоте 1090 МГц свои GPS-координаты (широта, долгота и высота), курс, скорость (в том числе вертикальную), а также уникальный 24-битный шестнадцатеричный «адрес» борта и номер текущего рейса. Эти данные видны диспетчерам и пилотам других самолетов.

Такая система гораздо точнее, чем традиционные радары, к тому же, она позволяет передавать пилотам актуальную информацию о погоде и схемы рельефа. Бонус: данные не шифруются и принимать их может любой желающий с помощью копеечного приемника с «Алиэкспресса» или даже компьютерного TV-тюнера. Именно так работает всем известный сервис Flightradar24.

Эволюция средств навигации

Астролябия (греч. ἁστρολάβον, астролабон, «берущий звезды») — древнейший астрономический инструмент, позволяющий определять широты и долготы небесных тел путём измерения горизонтальных углов. Этот прибор не только позволяет делать точные измерения, но и выглядит очень красиво и необычно.

Своему появлению астролябия обязана Древней Греции, а «отцом» прибора принято считать древнегреческого математика Аполлония Пергского. За время своего существования прибор испытывал на себе различные модификации. Так, учёные Востока применяли инструмент не только для определения времени и длительности светового дня, но и для математических вычислений.

Наиболее популярна астролябия стала в эпоху Возрождения, когда способность верно использовать прибор была одним из важнейших умений в астрономическом образовании. Знание астрономии тогда стояло во главе угла всего образования, а умение делать вычисления на астролябии свидетельствовало о высоком положении и интеллектуальном развитии человека.

По высоте Солнца

Секстант — навигационный прибор, позволяющий измерять высоту Солнца и прочих космических объектов над горизонтом для того, чтобы определить географические координаты. Освоить азы ориентации на местности, изучив знания, накопленные человечеством, поможет учебник по географии для 5 класса под редакцией А. А. Летягина.

Читайте так же:
Самые опасные пауки в России – список, описание, где водятся, чем опасны, фото и видео

Своё название «sextans» (лат. «шестой», «шестая часть») получил благодаря тому, что длина его шкалы равна шестидесяти градусам или шестой части от полного круга.

Чаще всего инструмент использовался в мореплавании. Прототипом секстанта был квадрант (лат. «четыре», «четвёртая часть»), определяющий высоту небесных светил.

Измерения проводились при помощи угломерных приборов, расположенных на длинной палке со шкалами градусов и вертикальных передвижных рельсов. Для определения координат инструмент наводили на определённый небесный участок, нижний рельс «накладывали» на горизонт, а верхний — на Солнце или звёзды в зависимости от времени суток.

География России. 9 класс. Рабочая тетрадь

По указанию иглы

Компас (итал. «compassio» — «измерять шагами») — это навигационное устройство для ориентирования на местности с помощью определения сторон света.

Древнейшим «предком» современного компаса была обычная ёмкость с водой, внутри которой располагали магнит игловидной формы на камышовом листике.

Считается, что изобретение принадлежит китайцам времен династии Сун (960 — 1279 гг.). Тогда компас использовался для указания направления движения в пустыне. Позже компасом начали пользоваться в мореходстве. Однако торговцы не спешили делиться изобретением, дабы избежать конкуренции, да и моряки всё ещё старались «держать курс» согласно различным профессиональным приметам, а не двигаться по «наущению» намагниченной иглы.

С течением времени «компас» трансформировался, к нему добавился специальный груз, чтобы инструмент можно было использовать и во время качки на борту. Также было замечено, что для верных измерений необходимо держать компас вдали от металлических вещей. Подробнее об этом вы узнаете в пособиях по географии под редакцией А. И. Алексеева.

На сегодняшний день компас может выглядеть по-разному: очень просто — практически, как при первом своём появлении, и достаточно сложно — если к нему были добавлены новые электронные детали. Однако несмотря на широкий выбор средств навигации про компас вряд ли забудут — уж слишком это простой, удобный и верный способ определить стороны света.

По советам карты

«Прототипом» первого современного навигатора стал прибор Plus Fours Routefinder, появившийся в 1920 году. Он представлял собой аккуратные наручные «часы» с экраном и со сменными картами, которые прокручивались специальными шестеренками по двум сторонам прибора.

В 1930 году навигация дошла и до автомобилей. От предыдущего изобретения он отличался скоростью прокручивания карт. Теперь «промотка» зависела не от ручных усилий, а от скорости машины. Однако присутствовал и существенный недостаток — при повороте дороги автомобиль приходилось останавливать, искать нужную карту и устанавливать её в прибор.

По сигналам из космоса

Переломным моментом в навигации стало появление первого искусственного спутника нашей планеты. «Спутник-1» — советский космический аппарат, вышедший на орбиту Земли 4 октября 1957 года. Исследователи всего мира следили за ходом этого грандиозного события. Ученые из Америки, наблюдая за сигналами спутника, установили, что частота получаемого сигнала растёт при приближении «Спутника-1» к планете и, соответственно, убывает при его отдалении. Такая закономерность позволяет вычислить местоположение аппарата и его скорость (при условии, что известны собственные координаты). Справедливыми становятся и обратные вычисления — определить своё местоположение, зная координаты спутника.

Подобные исчисления стали настоящим переворотом в области навигации. Сначала данными аппарата стали пользоваться военные. Так, появился первый GPS-спутник, запущенный американскими военными. Подобными разработками занимались и советские учёные.

Разработка глобальной навигационной спутниковой системы (ГЛОНАСС) официально началась в декабре 1967 года. Первый запуск спутника «Ураган» осуществился в 1982 году.

Основой системы ГЛОНАСС стали двадцать четыре спутника, движущихся в трёх орбитальных плоскостях Земли. Принципиальное отличие отечественных спутников от американских – в отсутствии резонанса с вращением Земли, благодаря чему наши спутники более стабильны.

До 2000 года сигнал GPS для обычного населения планеты передавался с помехами для того, чтобы показания были не совсем точны. Однако затем помехи были устранены, и мир получил возможность использовать в быту точные данные по определению местоположения.

Учитывая историю навигации и наблюдая за современными изобретениями, легко сделать вывод, что приборы по определению местоположения будут снова и снова совершенствоваться. Например, беспилотники стали уже не прерогативой военных сил — их разработкой занимаются все крупные производители автомобилей. Соединение действительной навигации GPS с виртуальным миром — уже не фантастика. Да и многие аппараты, о которых люди раньше только мечтали, уже воплотились в реальность. Именно поэтому мы с таким упоением следим на разработками учёных и наслаждаемся нововведениями мира навигации, ведь подобные открытия делают нашу жизнь не только проще, но и раздвигают рамки наших возможностей.

голоса
Рейтинг статьи
Ссылка на основную публикацию