100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как впервые вычислили окружность Земли – описание, схема, видео

Как впервые измерили окружность Земли

Более точное определение размеров земного шара сделал древнегреческий ученый Эратосфен Киренский, живший за 200 лет до н. э.

Слева — определение высоты Солнца скафисом. В центре — схема направления солнечных лучей: в Сиене они падают вертикально, в Александрии — под углом в 7° 12

Слева — определение высоты Солнца скафисом. В центре — схема направления солнечных лучей: в Сиене они падают вертикально, в Александрии — под углом в 7° 12′. Справа — направление луча солнца в Сиене в момент летнего солнцестояния.

Совершая путешествия из г. Александрии на юг, в г. Сиену (теперь Асуан), люди замечали, что там летом, в тот день, когда солнце бывает всего выше на небе (день летнего солнцестояния — 22 июня), в полдень оно освещает дно глубоких колодцев, т. е. бывает как раз над головой, в зените. Предметы в этот момент не дают тени. В Александрии же и в этот день солнце в полдень не доходит до зенита, не освещает дна колодцев, предметы дают тень.

Скафис — прибор для определения высоты Солнца над горизонтом.

Скафис — прибор для определения высоты Солнца над горизонтом.

Эратосфен измерил, насколько полуденное солнце в Александрии отклонено от зенита, и получил величину, равную 7°12′, что составляет 1/50 окружности. Это ему удалось сделать с помощью прибора, называемого скафисом. Скафис представлял собой чашу в форме полушария. В центре ее отвесно укреплялась игла. Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные цифрами. Если, например, тень доходила до окружности, помеченной цифрой 50, солнце стояло на 50° ниже зенита. Построив чертеж, Эратосфен совершенно правильно заключил, что Александрия отстоит от Сиены на 1/50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние между Александрией и Сиеной и умножить его на 50. Это расстояние было известно по времени, которое тратили караваны верблюдов на переход между городами. В единицах мер того времени оно равнялось 5000 стадий. Если 1/50 окружности Земли равняется 5000 стадии, то вся окружность Земли равна 5000 X 50 = = 250 000 стадий. В переводе на наши меры это расстояние приблизительно равно 39 500 км.

Зная длину окружности, можно вычислить и величину радиуса Земли.

Известно, что радиус всякой окружности в 6,283 раза меньше ее длины. Поэтому средний радиус Земли, по Эратосфену, оказался равным круглым числом 6290 км, а диаметр — 12 580 км.

Так Эратосфен нашел приблизительно размеры Земли, близкие к тем, которые определены точными приборами в наше время.

Эратосфен — Греческий математик, астроном, географ и поэт. Ученик Каллимаха, с 235 г. до н. э. — глава Александрийской библиотеки.

Скафис представляет собой чашу в форме полушария, в центре которой укрепляется игла. При ярком свете солнца тень от иглы падала на внутреннюю поверхность скафиса, на которой были нанесены окружности с цифрами, которые соответствовали значениям угла наклона солнца.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как впервые вычислили окружность Земли – описание, схема, видео

Планета Земля

В наши дни окружность Земли можно измерить с помощью измерительной аппаратуры и спутников. Но можно и не изобретать никаких хитроумных инструментов, как это сделал Эратосфен более 2000 лет назад. Он вычислил размеры Земли, не покидая стен библиотеки, где работал.

Как Эратосфен измерил окружность Земли?

Эратосфен

Эратосфен

Эратосфен — греческий ученый, живший в египетском городе Александрии с 276 года по 196 год до нашей эры. Работал он в Александрийском мусейоне. Отчасти это был музей, отчасти научный центр того времени.

В музее был ботанический сад, виварий, астрономическая обсерватория и лаборатории. Одни ученые мужи вели научные диспуты в аудитории музея, другие трапезничали и беседовали в триклинии (то есть в столовой).

Эратосфен заведовал библиотекой мусейона, в которой хранилось около 100 тысяч книг, написанных на свитках папируса (разновидность бумаги, сделанной из волокон растения папируса). Эратосфен интересовался всем на свете. Он изучал философию, историю и естественные науки, был театральным критиком. Многие коллеги по мусейону считали его дилетантом, то есть человеком, который всем интересуется, но ничего не знает по истине глубоко.

Читайте так же:
Как сделать дом на колесах из микроавтобуса

Как Эратосфен измерил окружность Земли?

Как Эратосфен измерил окружность Земли?

От проезжих путешественников Эратосфен услышал о необычном явлении, которое они наблюдали в Сиене, городе, расположенном далеко к югу от Александрии. Путешественники рассказали, что в полдень первого дня лета — в самый продолжительный день в году — в Сиене исчезали тени. Солнце в это время стояло прямо над головой, лучи его падали на землю отвесно вниз. Внимательно вглядываясь в воду водоема, можно было рассмотреть отражение Солнца на дне.

Эратосфен съездил в Сиену и убедился в этом сам. Вернувшись в Александрию, он обнаружил, что и в самый длительный день года в полдень стены мусейона продолжали отбрасывать тень на землю. Основываясь на этом простом наблюдении, он смог вычислить окружность Земли. Вот как он это сделал.

Вычисления окружности

Эратосфен знал, что из – за громадного расстояния от Земли до Солнца, лучи последнего достигают и Сиены и Александрии параллельными лучами. То есть лучи Солнца, падающие на землю в Александрии, параллельны лучам, падающим на землю в Сиене в то же время. Если бы Земля была плоской, то тени исчезали бы на ней повсеместно 21 июня. Но так как, рассуждал он, Земля искривлена, то в Александрии, удаленной от Сиены на 500 миль (1 миля равна 1,609 километра) к северу, местные стены и колонны наклонены по отношению к сиенским стенам и колон нам под некоторым углом.

Вычисления окружности

Вычисления окружности

Итак, в полдень первого дня лета Эратосфен измерил тень, отбрасываемую обелиском, стоявшим неподалеку от мусейона. Зная высоту обелиска, он смог легко вычислить длину линии, соединяющей вершину обелиска и конец тени. Получился воображаемый треугольник. После того как треугольник был «очерчен», оставалось, используя известные к тому времени правила геометрии, вычислить его углы. И Эратосфен их вычислил. Он нашел, что угол отклонения обелиска от солнечного луча составляет чуть больше 7 градусов.

Так как в Сиене вертикальные предметы не отбрасывали тени, то угол между ними и солнечным лучом составлял ноль градусов. Короче, никакого угла не было. Это означало, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Такой угол между городами — это 1 /50 часть окружности. Всякая окружность содержит 360 градусов, земная окружность в этом смысле не исключение. Эратосфен умножил расстояние между Сиеной и Александрией — 500 миль — на 50 и получил значение окружности Земли. Оно оказалось равным 25 тысячам миль. Современные ученые, измерившие с помощью высококлассной техники окружность Земли, нашли ее равной 24 894 тысяч миль. Все таки Эратосфен оказался первоклассным ученым, а не дилетантом.

Определение расстояний на земной поверхности

В настоящее время существует целая наука — геодезия, которая занимается определением расстояний на земной поверхности. Геодезисты используют специальные приборы для определения угловых расстояний. Они изучают колебания силы тяжести на нашей планете, чтобы выявить истинную форму Земли. Для вычисления углов используют спутники. Такой спутник перемещается в вершину воображаемого треугольника, два других его угла помещают в заданных точках на земной поверхности.

Как вычислили окружность Земли

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как греки Землю измеряли

Пост про расчеты расстояния до Солнца подтолкнул к другому тексту – о вычислении расстояния до Луны (поскольку эта цифра использовалась Аристархом в расчетах, возник вопрос, а откуда он ее взял). Но уже в комментариях ко второму тексту прозвучал следующий вопрос – «А теперь можно про радиус Земли подробнее?»

Спрашивали – отвечаем. Ну и чтобы «два раза не вставать», начну даже не с радиуса, а с того, как греки пришли к выводу, что Земля имеет форму шара, а не диска или сундука (как утверждал позже ученый византиец Козьма Индикоплов).

Читайте так же:
Почему вирус гриппа каждый год новый?

Этим вопросом озаботились именно греки, в более древних цивилизациях (Вавилон, Египет) небо изучали, и довольно тщательно, пытались предсказать движение небесных тел, а вот вопросом формы Земли не заморачивались.

Трудно сказать, кто из греков первым озвучил идею о том, что Земля – это шар, наиболее распространена версия, что Пифагор. Но самый старый письменный трактат с этим утверждением, дошедший до нас («О движущейся сфере»), принадлежит другому математику – Автолику из Питаны, родившемуся лет на двести позже Пифагора. Правда, это вообще, самый старый античный математический трактат, дошедший до нас. И уже в нем Землю называют сферой. Но там это было подано как некая данность, т.е. Автолик был не первым, кто озвучил эту идею.

А затем его современник, великий Аристотель в трактате «О небе» подробно обосновал это утверждение. В основном объяснения были философского характера (сферическая Земля – неуничтожимый центр космоса и т.п.). Но был и ряд вполне конкретных доказательств. Прежде всего – результаты наблюдений за лунными затмениями: у них всегда бывает дугообразная ограничивающая линия. «Раз Луна затмевается потому, что её заслоняет Земля, то причина такой формы – окружность Земли, и Земля шарообразна», — делает вывод Аристотель.

Еще более интересный вывод сделал он из наблюдений за звездами. Для начала философ отметил, что в Египте и в Македонии имеются заметные наблюдателю различия в расположении звезд. И вывел: «Из этого ясно не только то, что Земля круглой формы, но и то, что эта сфера невелика: иначе столь незначительные перемещения не вызывали бы столь быстрых изменений».

Ну а дальше, поскольку с формой Земли образованная часть греков определилась, равно как и с тем, что размеры ее не так уж велики, напрашивался следующий шаг – измерить Землю.
Перед тем как перейдем к процессу и его результатам, отмечу один нюанс. Мерили греки, как я уже говорил в стадиях, а нюанс в том, что это сейчас километр он и в Африке километр. А тогда системы СИ не было. Всякий стадий составляет 100 пар шагов или 600 ступней, но шаги и ступни в разных системах мер могли несколько различаться: было несколько вариантов стадиев, от 172 до 185 метров (а еще вавилонский вариант стадия, но он нам здесь не интересен). Часто приходится гадать, каким стадием пользовался тот или иной автор. Поэтому, когда мы переводим результаты в привычные километры, то, конечно, рискуем ошибаться. Но – в пределах 6-7%. Для астрономии немало, для истории вопроса – терпимо.

Теперь собственно о том, как греки Землю измеряли. Известны два исследования, проделанных с этой целью. Первое осуществил Эратосфен в III веке до нашей эры, второе – Посидоний сто с небольшим лет спустя. В обоих случаях греки применили схожий подход, разница была в деталях. Смысл его в следующем: и Солнце, и звезды доступны одновременному наблюдению в разных местах на Земле, но поскольку расстояние до них явно во много раз больше размеров самой Земли, все лучи света, приходящие от них к нам мы можем считать параллельными.

Эратосфен измерил высоту Солнца над горизонтом в полдень летнего солнцестояния в Александрии и в Сиене (Асуане). Почему там? А еще до него, древние египтяне заметили, что во время летнего солнцестояния Солнце освещает дно глубоких колодцев в Сиене (ныне Асуан), а в Александрии – нет. Будь Земля плоской, рассуждал Эратосфен, этого не могло бы быть (мы помним – лучи параллельны), но она круглая, т.е. искривлена. А Сиена и Александрия находятся на одном меридиане (считал он) на расстоянии 5000 стадиев друг от друга. Значит, стены в Александрии наклонены под некоторым углом по отношению к стенам в Сиене, поэтому в полдень солнцестояния они продолжают отбрасывать некоторую тень.

Эратосфен измерил тень от одного александрийского обелиска, зная также его высоту, он «построил треугольник из обелиска и его тени» и вычислил, что угол отклонения обелиска от солнечного луча составляет чуть больше 7 градусов. Это означало, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Такой угол – 1/50 часть окружности и одновременно упомянутые 5000 стадиев. Значит общая длина окружности 250 000 стадиев, заключил Эратосфен. А рассчитывать радиус, зная длину окружности, греки умели.

Читайте так же:
Как делают фермерский сыр

Сегодня мы знаем, что расчеты Эратосфена имели ряд серьезных погрешностей: Александрия и Сиена расположены не на одном меридиане, поэтому разница между их параллелями меньше, само это расстояние тоже было измерено приблизительно, со слов караванщиков, да и углы этих городов по направлению к солнечным лучам он измерил с ошибкой. И все же, ему удалось получит результат очень близкий к современным данным (6 371 км). Правда, в зависимости от того, какими стадиями он считал, если греческими, то да, его ответ — 6 916 км, а если стадиями египетских фараонов (дело было в Египте и расстояние могло быть указано в них), то его ответ — 8 397 км — намного больше реального.

Впрочем, Посидоний напутал еще больше. Но он и считал не по тени от Солнца, а по расположению звезды Канопус на небе Александрии и греческого острова Родос, которые разделяли те же 5000 стадий. Но эти точки тоже лежали не на одном меридиане, плюс морские расстояния греки измеряли с гораздо меньшей точностью. В итоге, по его расчетам Земля получилась чуть ли не на треть меньше, чем у Эратосфена.

Да, греки ошибались в расчетах, но главное они сделали – придумали метод, как можно измерить размер Земли, не покидая ее поверхности. Дальше дело было за совершенствованием географических данных и измерительных приборов. Ну а греки не остановились и придумали как рассчитать расстояние до Луны и до Солнца.

Как измерить окружность Земли?

Меня периодически посещает ощущение что многие простые вещи специально излагаются так, чтобы читатель ничего не понимал и тупо заучивал, либо прочувствовал свою ничтожность перед изощренностью науки. Это всецело относится к известному по школьным учебникам феерическому способу Эратосфена измерения окружности земного шара. Может быть он на самом деле вычислял таким извращенским способом, но зачем этот бред тиражировать со школы?

О том, как можно запудрить мозги в простом вопросе, посмотрим на примере вычисления длины окружности Земли в морских милях, который является частным случаем измерения широты местности и длины пройденного пути по меридиану.

Если современному человеку дать задачу вычислить длину окружности Земли в морских милях, он в подавляющем большинстве случаев заглянет в интернет/справочники и решит примерно так: длину окружности Земли например по парижскому меридиану 40.000 км с помощью калькулятора разделит на современную морскую милю 1,852 км и получит 21.598,3 морских миль, что будет близко к действительности.

Теперь покажу как вычислить длину окружности Земли в уме и абсолютно точно. Для этого надо знать только одно: «Морская миля — единица измерения расстояния, применяемая в <wbr />мореплавании и авиации.Первоначально морская миля определялась как <wbr />длина дуги большого круга на поверхности земного шара размером в <wbr />одну угловую минуту.» via

морская миля угловая минута

В одном угловом градусе 60 минут, в окружности — 360 градусов, то есть в окружности 360х60=21.600 угловых минут, что в данном случае соответствует длине окружности земного шара в 21.600 морских миль. И это — абсолютно точно, поскольку длина окружности земного шара по меридиану является эталоном, а угловая минута-миля — производная единица. Поскольку Земля — не идеальный сфероид, а слегка кривоватый, то мили на разных меридианах будут немного отличаться друг от друга, но это совершенно неважно для навигации, ибо угловая минута — она и в Африке угловая минута.

Широту местности с точностью до градусов вполне можно измерить даже примитивными приспособлениями вроде транспортира с отвесом, который не сильно отличается от реально применявшегося моряками квадранта и по существу то же самое что и астролябия:

Читайте так же:
Какие рыбы спят под землей?

измерение широты транспортиром по Полярной звездеизмерение углов квадрантомизмерение углов астролябией

Для более точных измерений углов впоследствии был изобретен секстант (мор. арго — секстан):

Современные люди слабо представляют себе что такое аналоговые вычислительные машины и как ими пользоваться. Для того, чтобы вычислить расстояние между двумя точками в меридиональном направлении, надо всего лишь измерить широты точек, аразность широт выраженная в угловых минутах и будет расстоянием между ними в морских милях. Все просто, удобно и практически применимо.

Если уж так сильно хочется выяснить сколько в морской миле стадий, саженей, аршинов или там египетских локтей, надо аккуратно на коленках промерить ими расстояние между точками с известным расстоянием в морских милях-угловых минутах. Но зачем? Как это практически применимо?

Эратосфен будто бы измерял углы с точностью до угловых секунд и разница широт Александрии составила у него 7° 6,7′, то есть 7х60=420+6,7=426,7 морских миль (угловых минут). Кажется, что еще надо? Но ему почему-то требуются дни пути верблюдов и стадии. Возникает ощущение чего-то надуманного — фейка или розыгрыша.

Метод Эратосфена согласно В. А. Бронштейн, Клавдий Птолемей, Гл.12. Работы Птолемея в области географии:

«Как известно, метод Эратосфена заключался в определении дуги меридиана между Александрией и Сиеной в день летнего солнцестояния. В этот день, по рассказам лиц, посещавших Сиену, Солнце в полдень освещало дно самых глубоких колодцев и, значит, проходило через зенит. Следовательно, широта Сиены равнялась углу наклона эклиптики к экватору, который Эратосфен определил в 23°51’20». В тот же день и час в Александрии тень от вертикального столбика гномона закрывала 1/50 часть окружности, центром которой служил кончик гномона. Это значит, что Солнце отстояло в полдень от зенита на 1/50 часть окружности, или на 7° 12′. Приняв расстояние между Александрией и Сиеной равным 5000 стадиев, Эратосфен нашел, что окружность земного шара равна 250 000 стадиев. Вопрос о точной длине стадия, принятого Эратосфеном, долгое время служил предметом дискуссий, поскольку существовали стадии длиной от 148 до 210 м <60>. Большинство исследователей принимали длину стадия 157,5 м («египетский» стадий). Тогда окружность Земли равна, по Эратосфену, 250 000-0,1575 = 39 375 км, что очень близко к действительному значению 40 008 км. Если же Эратосфен пользовался греческим («олимпийским») стадием длиной185,2 м, то получалась окружность Земли уже 46 300 км.

По современным измерениям <97> широта Музея в Александрии 31°11,7′ широта Асуана (Сиены) 24° 5,0′, разница широт 7° 6,7′, чему соответствует расстояние между этими городами 788 км. Деля это расстояние на 5000, получим длину стадия, использованного Эратосфеном, 157,6 м. Значит ли это, что он использовал египетский стадий?

Этот вопрос сложнее, чем может показаться.Уже одно то, что Эратосфен привел явно округленное число — 5000 стадиев (а, скажем, не 5150 или 4890) не внушает к нему доверия. А если оценка Эратосфена была завышена хотя бы на 15%, получим, что он использовал египетский стадий в 185 м. Решить этот вопрос пока нельзя.» via

Теперь обратим внимание на следующие обстоятельства:

— Асуан (Сиена) и Александрия не находятся на одном меридиане, разница по долготе составляет 3°, то есть около 300 километров.

— Эратосфен не измерил расстояние, а принял исходя из дней пути верблюдов, которые ходили явно не по прямой линии.

— Совершенно неясно каким прибором Эратосфен измерял углы с точностью до секунд

— Непонятно какой стадий использован Эратосфеном для измерения расстояний и т.п.

Но при этом он будто бы получил достаточно точный результат! Или историками сделана подгонка под результат?

Из Википедии: «Эратосфен говорит, что Сиена и Александрия лежат на одном меридиане. И поскольку меридианы в космосе являются большими кругами, такими же большими кругами обязательно будут и меридианы на Земле. И поскольку таков солнечный круг между Сиеной и Александрией, то и путь между ними на Земле с необходимостью идёт по большому кругу. Теперь он говорит, что Сиена лежит на круге летнего тропика. И если бы летнее солнцестояние в созвездии Рака происходило ровно в полдень, то солнечные часы в этот момент времени с необходимостью не отбрасывали бы тени, поскольку Солнце находилось бы точно в зените; дела и в самом деле обстоят таким образом в [полосе шириной] в 300 стадиев. А в Александрии в этот же час солнечные часы отбрасывают тень, поскольку этот город лежит к югу от Сиены. Эти города лежат на одном меридиане и на большом круге. На солнечных часах в Александрии проведём дугу, проходящую через конец тени гномона и основание гномона, и этот отрезок дуги произведёт большой круг на чаше, поскольку чаша солнечных часов расположена на большом круге. Далее, вообразим две прямые, опускающиеся под Землю от каждого гномона и встречающиеся в центре Земли. Солнечные часы в Сиене находятся отвесно под Солнцем, и воображаемая прямая проходит от Солнца через вершину гномона солнечных часов, производя одну прямую от Солнца до центра Земли. Вообразим ещё одну прямую, проведённую от конца тени гномона через вершину гномона к Солнцу на чаше в Александрии; и она будет параллельна уже названной прямой, поскольку уже сказано, что прямые от разных частей Солнца к разным частям Земли параллельны (а это он откуда знает?). Прямая, проведённая от центра Земли к гномону в Александрии, образует с этими параллельными равные накрестлежащие углы. Один из них — с вершиной в центре Земли, при встрече прямых, проведённых от солнечных часов к центру Земли, а другой — с вершиной на конце гномона в Александрии, при встрече с прямой, идущей от этого конца к концу его же тени от Солнца, там где эти прямые встречаются наверху. Первый угол опирается на дугу от конца тени гномона до его основания, а второй — на дугу с центром в центре Земли, проведённую от Сиены до Александрии. Эти дуги подобны между собой, поскольку на них опираются равные углы. И какое отношение имеет дуга на чаше к своему кругу, такое же отношение имеет и дуга от Сиены до Александрии [к своему кругу]. Но найдено, что на чаше она составляет пятидесятую часть своего круга. Поэтому и расстояние от Сиены до Александрии с необходимостью будет составлять пятидесятую часть большого круга Земли. Но оно равно 5 000 стадиев. Поэтому весь круг будет равен 250 000 стадиям. Таков метод Эратосфена».

Читайте так же:
Почему Москву называют «первопрестольной» и «белокаменной»? Причины, видео

Позднее полученное Эратосфеном число было увеличено до 252 000 стадиев. Определить, насколько эти оценки близки к реальности, трудно, поскольку неизвестно, каким именно стадием пользовался Эратосфен. Но если предположить что речь идёт о греческом (178 метров), то его радиус земли равнялся 7 082 км, если египетским (157,5), то 6 287 км. Современные измерения дают для усреднённого радиуса Земли величину 6 371 км, что делает вышеописанный расчёт выдающимся достижением и первым достаточно точным расчётом размеров нашей планеты.»

Обращаю внимание на то, что в Википедии кроме подгонки результатов также сначала говорится об измерении Эратосфеном длины окружности Земли, а в итоге делается вывод о точности вычисления радиуса Земли. В общем, в огороде бузина, а в Киеве — дядька, хоть они и взаимосвязаны.

Диагноз очень простой: в учебниках по-прежнему будут тиражировать не дающий ничего для понимания сущности и практической применимости метод Эратосфена, но ни словом не будут упоминать связку «морская миля — угловая минута» как пример пропорционального мышления древних, потому что современный тренд заточен под дискретные вычислительные машины, а обаналоговых вычислительных машинах древности приходится рассказывать заново.

голоса
Рейтинг статьи
Ссылка на основную публикацию