100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое гипотеза Пуанкаре? Описание, суть, фото и видео

Гипотеза Пуанкаре: формулировка и доказательство

Практически каждый человек, даже тот, кто не имеет никакого отношения к математике, слышал слова «гипотеза Пуанкаре», но не все могут объяснить, в чем ее суть. Для многих высшая математика кажется чем-то очень сложным и недоступным для понимания. Поэтому попробуем разобраться, что же означает гипотеза Пуанкаре простыми словами.

  1. Что такое гипотеза Пуанкаре?
  2. Кто такой Пуанкаре?
  3. Доказательство гипотезы

Что такое гипотеза Пуанкаре?

Формулировка гипотезы в оригинале звучит так: «Всякое компактное односвязное трехмерное многообразие без края гомеоморфно трёхмерной сфере».

Шар – это геометрическое трехмерное тело, его поверхность называется сферой, она двумерна и состоит из точек трехмерного пространства, которые равноудалены от одной, не принадлежащей этой сфере, точки – центра шара. Кроме двумерных сфер, существуют еще трехмерные сферы, состоящие из множества точек четырехмерного пространства, которые так же равноудалены от одной, не принадлежащей сфере, точки – ее центра. Если двухмерные сферы мы можем увидеть собственными глазами, то трехмерные не подвластны нашему зрительному восприятию.

Поскольку мы не имеем возможности увидеть Вселенную, то можно предположить, что она и есть трехмерная сфера, в которой живет все человечество. В этом и состоит сущность гипотезы Пуанкаре. А именно то, что Вселенная имеет следующие свойства: трехмерность, бескрайность, односвязность, компактность. Понятие «гомеоморфность» в гипотезе означает высочайшую степень схожести, подобия, для случая со Вселенной – неотличимость.

Кто такой Пуанкаре?

Жюль Анри Пуанкаре – величайший математик, который родился в 1854 году во Франции. Его интересы не ограничивались только математической наукой, он изучал физику, механику, астрономию, философию. Был членом более 30 научных академий мира, в том числе Петербургской академии наук. Историки все времен и народов причисляют к величайшим математикам мира Давида Гильберта и Анри Пуанкаре. В 1904 году ученый издал знаменитую работу, которая содержала предположение, известное на сегодняшний день как «гипотеза Пуанкаре». Именно трехмерное пространство для математиков оказалось очень сложным для исследования, найти доказательства других случаев не составило труда. В течение около одного столетия доказывалась истинность этой теоремы.

В начале ХХІ века в Кембридже была учреждена премия в один миллион долл. США за решение этой научной задачи, которая входила в список проблем тысячелетия. Только российский математик из Санкт-Петербурга Григорий Перельман смог это сделать для трехмерной сферы. В 2006 году за это достижение ему была присвоена медаль Филдса, но он отказался от ее получения.

К заслугам в научной деятельности Пуанкаре можно отнести следующие достижения:

  • основание топологии (разработка теоретических основ различных явлений и процессов);
  • создание качественной теории дифференциальных уравнений;
  • разработка теории аморфных функций, которая стала основой специальной теории относительности;
  • выдвижение теоремы о возвращении;
  • разработка новейших, эффективнейших методов небесной механики.

Доказательство гипотезы

Односвязному трехмерному пространству присваиваются геометрические свойства, оно разделяется на метрические элементы, которые имеют расстояния между собой с образованием углов. Для упрощения берется в качестве образца одномерное многообразие, в котором на эвклидовой плоскости к гладкой замкнутой кривой проводятся в каждой точке касательные вектора, равные 1. При обходе кривой вектор поворачивается с определенной угловой скоростью, равной кривизне. Чем сильнее изгиб линии, тем больше кривизна. Кривизна имеет положительный наклон, если вектор скорости повернут в сторону внутренней части плоскости, которую делит линия, и отрицательный, если повернут вовне. В местах перегиба кривизна равна 0. Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Он повернут внутрь, когда кривизна имеет положительный наклон, и вовне – когда отрицательный. Соответствующий вектор определяет направление и скорость, с которой движется каждая точка на плоскости. Если провести в любом месте замкнутую кривую, то при такой эволюции она превратится в окружность. Это справедливо для трехмерного пространства, что и требовалось доказать.

Пример: из воздушного шара при деформации без разрывов можно сделать разные фигуры. Но бублик сделать не получится, для этого его нужно только разрезать. И наоборот, имея бублик, никак не сделаешь цельный шар. Хотя из любой другой поверхности без разрывов при деформации можно получить сферу. Это свидетельствует о том, что эта поверхность гомеоморфна шару. Любой шар можно обвязать ниткой с одним узлом, с бубликом это сделать невозможно.

Шар – это самая простая трехмерная плоскость, которую можно деформировать и свернуть в точку и наоборот.

О гипотезе Пуанкаре. Лекция в Яндексе

Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.

Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.

Читайте так же:
Необычные обитатели острова Косумель — разбираемся в общих чертах

Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.

Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.

Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.

Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).

Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.

Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.

Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.

С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.

Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие — нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:

Из 26 букв у нас получается всего 8 классов.

На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.

Формальная постановка вопроса

Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.

Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.

Гипотеза Пуанкаре для поверхностей

Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.

Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.

Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.

Вот простой пример: если считать, что на картинке выше все треугольники правильные, то после склеивания у нас должен получиться правильный тетраэдр, поверхность которого также гомеоморфна сфере.

Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).

Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:

Рассмотрим примеры простейших склеек:

В первом случае у нас получится сфера:

Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):

В третьем случае получится так называемая бутылка Клейна:

Если склеивать не все стороны многоугольника, то получится поверхность с краем:

Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.

Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.

Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:

Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.

Теперь подробнее остановимся на понятии петли. Петял — это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:

Читайте так же:
6 советов от ученых и психологов — как начать ощущать себя счастливым

Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:

На плоскости можно стянуть любую петлю:

А вот какие петли бывают на торе:

Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум — это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем — это будет несколько сложнее.

Эйлерова характеристика

Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.

Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г — число многоугольников, Р — это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B — это число вершин, которое получается после склейки после склейки.

Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.

Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г — это и есть эйлерова характеристика поверхности.

Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.

Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности — о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ

Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.

Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.

Гипотеза Пуанкаре и происхождение Вселенной

На диск, эллипс можно натянуть изогнутую линию. Понятно,
что на шар, дыню можно натянуть круглую"лепешку" и
затянуть ее шнуром, как, например, рюкзак.

Логично предположить, что на N — мерный эллипсоид, в том
числе N-мерную сферу, и на подобные поверхности, может быть
натянута N-1 мерная сфера и затянута гипершнуром. Эллиптическая
сфера не может быть равномерно натянута на сферу или "дыню"
высшего порядка размерности. Попытки натянуть сферу на другую
фигуру высшей размерности, например, бублик, скорее всего,
будут неудачными.

Интересно рассмотреть полное покрытие поверхности N- ного порядка
поверхностью N-1 порядка, оставляющее "шов" меньшей размерности.

Топология помогает понимать суть высших размерностей при помощи
непрерывных деформаций поверхностей меньшей размерности.
То есть, описание нашего искривленного пространства дает ключ к
пониманию пространства высших размерностей.

Математик Г.Перельман доказал, что трехмерная сфера — это единственная
трехмерная форма, поверхность которой может быть стянута в одну точку
неким гипотетическим «гипершнуром».

Далее делается вывод, что "это доказательство помогает понять, какая

форма у нашей Вселенной. И позволяет в е с ь м а о б о с н о в а н н о
предположить, что она и есть та самая трехмерная сфера. Но если Вселенная —
единственная «фигура», которую можно стянуть в точку, то, наверное, можно
и растянуть из точки. Что служит косвенным подтверждением теории Большого
взрыва, которая утверждает: как раз из точки Вселенная и произошла.
Получается, что Перельман вместе с Пуанкаре огорчили так называемых
креационистов — сторонников божественного начала мироздания. И пролили
воду на мельницу физиков-материалистов".

Конечно же, Вселенная гораздо сложнее, чем сфера любой, какой угодно,
размерности! И понятие развития Вселенной из точки, так называемая
теория Большого взрыва, льет гораздо больше воды на другие мельницы —
теорий Божественного происхождения нашей Вселенной!

Любые теории происхождения самой вселенной — не состоятельны!
Допустимо рассуждать о происхождении знаний о вселенной.
Зрительное восприятие вселенной ограничено чисто физическими возможностями,
оптического канала наблюдения просторов вселенной,
наблюдателя, расположившегося на Земле или на орбите.
Второе ограничение возможностей наблюдения вселенной, физическое закономерное рассеяние мощности источника излучения в пространстве вселенной.
Третье ограничение накладывается самим пространством, преобразующим,
в своей среде, электромагнитные колебания, которыми является видимый свет, с длиной электромагнитной волны, в оптическом диапазоне:
от 400 нанометров, . , — до 700 нанометров,- в электромагнитные колебания радиочастотного — невидимого для глаза спектра (инфракрасного, субмиллиметрового, миллиметрового, сантиметрового, дециметрового, метрового и далее, до квазистатического магнитного эффекта и квазистатического электричества, соответствующего
бесконечно длинным волнам), —
приводящее к пониманию неограниченности вселенной.
А! Путаницы, внесённые квази-учёными, смешавшими понятия галактики и вселенной, да, и, понятия свойственные церкви, считающей вселенную количеством прихожан в сельскую церковь, следует считать возложенными на совесть носителей этих понятий. В том числе, на совесть проповедников теории большого взрыва.
Альберт Эйнштейн, основатель теории относительности, потому так и назвал свою теорию, "Теорией Относительности", потому, что его теория — не теория "Абсолютности", а теория относительности, от математического понятия "отношение", используемое при измерениях, и применяемое в отношении "меры". А! Это, совершенно не применимо к неизмеримым величинам. К которым следует отнести человеческое понятие вселенной.
Альберт Эйнштейн сразу стал сопротивляться настойчивости "лже-друзей", пытающихся, натянуть понятие относительности на понятие абсолютности вселенной. Лже-друзья Альберта Эйнштейна, своей силовой сплочённостью сломили волю учёного, но это привело к уничтожению его серьёзных научных трудов.
Понятие вселенной выходит за пределы точных наук, и поэтому является "пробным камнем" или "камнем преткновения"
— "key stone of the pacific"- для философов.

Читайте так же:
Новый год: не только в январе

2010, август, 06, пятница, 18:28:00 — время по Омскому меридиану.
Виктор Дмитриевич Перепёлкин

Разлетание галлактик, по моему, не вследствие взрыва, а вследствие
отталкивания. Внутри галлактик действует притяжение. Разлёт галлактик
происходит с ускорением, что свидетельствует о наличии взаимной отталкивающей силы.

Здравствуйте! Уважаемый Всеволод Новопашин!
Здесь из Омска Виктор Перепёлкин.
Разлетания галактик не существует.
Потому, что разлетание — выдумка, базирующаяся
на желании получить "нобелевку", за обнаружение
взрыва вселенной, — путём указания на красное
"смещение",- которому приписывается результат
Допплеровского "сдвига" частот, в спектрах
галактик, которые удалены от Земли, на столько,
что мощность излучений очень ослаблена в
пространстве, причём, до такого предела,
что быстрые, то есть энергичные колебания, не
возможны, а до наблюдателя, доходят медленные,
то есть ослабленные колебания.
Член корреспондент Академии Наук СССР, до этого
получивший 7 — классное образование, и работавший
на дальневосточной дороге строителем
и
минуя 3 класса, не постигнув наук в 8, 9, и 10 —
классах средней общеобразовательной школы, путём
поступления в Дальневосточный университет,
а
затем Московский университет,
сразу в Астрономический институт, хотя у него
были серьёзные недостатки со зрением,
из за чего его не взяли в армию и даже на фронт,
занимаясь радиоастрономией, написал и опубликовал,
свою книгу под названием: "Жизнь Земля Вселенная",
в которой пропагандировал идеи большого взрыва,
из за которого, якобы появилась вселенная
и
реликтовое излучение на радиочастотах,
и про красное смещение спектров,
как Допплеровский эффект, который наблюдается,
в основном на железной дороге,
при близко проезжающем гудящем паровозе,
а
на больших расстояниях Допплеровский эффект
не существенен.
Поэтому нельзя рассматривать красное "смещение",
как эффект разбегания вселенной.
Вселенная НЕ РАЗБЕГАЕТСЯ!
Вселенная существовала всегда
и
вселенная будет существовать всегда.
Пространство вселенной не ограничено.
Галактики не разлетаются!
Изменение фокусировки телескопа, создаёт эффект
разлетания изображения, но не галактик.
Обман зрения. Результат восприятия человеком
перемещающихся меток на экране видео монитора.

Другой вопрос: "Об ограниченности восприятия
человеком пространства вселенной".

Ограничение восприятия — существует!

Ни какие технические средства,
— не позволяют увидеть того,
что располагается за пределами возможностей
оптического канала восприятия.
Расширение пределов восприятия вселенной,
становится возможным, если согласиться
с
существующим, не только наличием фильтрующего
эффекта космического пространства, как упомянул
Близнецов,
но
и
существующим в космическом пространстве эффекта
преобразования энергичных колебаний, в более
длинно волновые колебания, соответствующие
ослабленной энергии радиочастотных колебаний,
не видимых в оптическом
диапазоне электромагнитных колебаний,
доступных для восприятия простым глазом.
С уважением! Виктор Перепёлкин
2010, сентябрь, 28, вторник, 22:56:00,-
время по Омскому меридиану

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2021. Портал работает под эгидой Российского союза писателей. 18+

Теорема Пуанкаре простыми словами

Жюль Анри Пуанкаре (1854-1912) возглавлял Парижскую академию наук и был избран в научные академии 30 стран мира. Он имел масштаб Леонардо: его интересы охватывали физику, механику, астрономию, философию. Математики же всего мира до сих пор говорят, что только два человека в истории по-настоящему знали эту науку: немец Давид Гилберт (1862-1943) и Пуанкаре.

Теорема Пуанкаре

В 1904 году учёный опубликовал работу, содержавшую среди прочего предположение, получившее название теорема Пуанкаре. Поиск доказательства истинности этого утверждения занял около века.

Основатель топологии

Математический гений Пуанкаре впечатляет количеством разделов науки, где им были разработаны теоретические основы различных процессов и явлений. Во времена, когда ученые совершали прорывы в новые миры космоса и в глубины атома, было не обойтись без единой основы общей теории мироздания. Такой базой стали ранее неизвестные отрасли математики.

Читайте так же:
Собор безумного испанца

Пуанкаре искал новый взгляд на небесную механику, он создал качественную теорию дифференциальных уравнений, теорию автоморфных функций. Исследования ученого стали основой специальной теории относительности Эйнштейна. Теорема Пуанкаре о возвращении говорила среди прочего о том, что понять свойства глобальных объектов или явлений можно исследуя составляющие их частицы и элементы. Это дало мощный толчок научным поискам в физике, химии, астрономии и т.д.

Теорема Пуанкаре простыми словами

Геометрия — отрасль математики, где Пуанкаре стал признанным новатором и лидером мирового масштаба. Теория Лобачевского, открыв новые измерения и пространства, еще нуждалась в ясной и логичной модели, и Пуанкаре придал идеям великого русского ученого прикладной характер.

Развитием неэвклидовой геометрии стало возникновение топологии – отрасли математики, которую называли геометрией размещения. Она изучает пространственные взаимоотношения точек, линий, плоскостей, тел и т.д. без учета их метрических свойств. Теорема Пуанкаре, ставшая символом самых трудноразрешимых задач в науке, возникла именно в недрах топологии.

Одна из семи задач тысячелетия

В самом начале XXI века одно из подразделений американского университета в Кембридже — математический институт, основанный на средства бизнесмена Лэндона Т. Клэя — опубликовал список Millennium Prize Problems (проблем тысячелетия). Он содержал семь пунктов из классических научных задач, за решение каждой из которых учреждалась премия в миллион долларов:

• Равенство классов P и NP (о соответствии алгоритмов решения задачи и методов проверки их правильности).
• Гипотеза Ходжа (о связи объектов и их подобия, составленного для их изучения из «кирпичиков» с определенными свойствами).
• Гипотеза Пуанкаре (всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере).
• Гипотеза Римана (о закономерности размещения простых чисел).
• Теория Янга — Миллса (уравнения из области элементарных частиц, описывающие различные виды взаимодействий).
• Существование и гладкость решений уравнений Навье — Стокса (описывают турбулентность течений воздуха и жидкостей).
• Гипотеза Бёрча — Свиннертон-Дайера (об уравнениях, описывающих эллиптические кривые).

Каждая эта проблема имела очень долгую историю, поиски их решения приводили к возникновению целых новых научных направлений, но единственно правильные ответы на поставленные вопросы не находились. Понимающие люди говорили, что деньги фонда Клэя в безопасности, но так было лишь до 2002 года – появился тот, кто доказал теорему Пуанкаре. Правда, деньги он не взял.

Классическая формулировка

Гипотеза, для которой найдено подтверждение, становится теоремой, имеющей корректное доказательство. Именно это произошло с высказанным Пуанкаре предположением о свойствах трехмерных сфер. В более общем виде этот постулат говорил о гомеоморфности всякого многообразия размерности n и сферы размерности n как необходимом условии их гомотопической эквивалентности. Знаменитая теперь теорема Пуанкаре относится к варианту, когда n=3. Именно в трехмерном пространстве математиков ждали затруднения, для других случаев доказательства были найдены быстрее.

Чтобы хоть немного постичь смысл теоремы Пуанкаре, не обойтись без знакомства с основными понятиями топологии.

Гомеоморфизм

Топология, говоря о гомеоморфизме, определяет его как взаимно-однозначное соответствие между точками одной и другой фигуры, в некотором смысле неотличимость. Неподготовленному сложно даётся теорема Пуанкаре. Для чайников можно привести самый популярный пример гомеоморфных фигур – шар и куб, также гомеоморфны бублик и кружка, но не кружка и куб. Фигуры гомеоморфны, если одну фигуру можно получить произвольной деформацией из другой, причем это преобразование ограничено некоторыми свойствами поверхности фигуры: её нельзя рвать, прокалывать, разрезать.

Если куб раздуть, он легко может стать шаром, если шар примять встречными движениями, можно получить кубик. Наличие дырки у бублика и дырки, образованной ручкой у кружки, делает их гомеоморфными, та же дырка делает невозможным превращение кружки в шар или куб.

Связность

Дырка – важное понятие, определяющее свойства объекта, но категория совершенно не математическая. Было введено понятие связности. Его содержат многие топологические постулаты, в том числе и теорема Пуанкаре. Простыми словами можно говорить так: если поверхность шара обернуть петлей из резиновой ленты, она, сжимаясь, соскользнёт. Этого не произойдет, если имеется отверстие, как у тора-бублика, сквозь которое можно продеть эту ленту. Таким образом определяется главный признак сходства или отличия объектов.

Многообразие

Если объект или пространство разделить на множество составных частей – окрестностей, окружающих какую-то точку, — то их общность называют многообразием. Именно такое понятие содержит теорема Пуанкаре. Компактность означает конечное число элементов. Каждая отдельная окрестность подчиняется законам традиционной – эвклидовой – геометрии, но вместе они образуют нечто более сложное.

Самая адекватная аналогия этих категорий – поверхность земли. Изображение её поверхности представляет собой карты отдельных её районов, собранные в атлас. На глобусе эти изображения обретают форму шара, который относительно пространства Вселенной превращается в точку.

Трехмерная сфера

По определению, сфера – совокупность точек, которые равноудалены от центра – некой фиксированной точки. Одномерная сфера расположена в двухмерном пространстве в виде окружности на плоскости. Двухмерная сфера – поверхность шара, его «корочка» — совокупность точек в трехмерном пространстве и, соответственно, трехмерная сфера – суть теоремы Пуанкаре – поверхность четырехмерного шара. Вообразить такой объект очень трудно, но, говорят, мы — внутри такого геометрического тела.

Математики приводят ещё и такое описание трехмерной сферы: допустим, что к нашему привычному пространству, считаемому неограниченным и определяемому тремя координатами (X, Y, Z), добавлена точка (на бесконечности) таким образом, что в неё всегда можно попасть, двигаясь в любом направлении по прямой линии, т.е. любая прямая в этом пространстве становится окружностью. Говорят, что есть люди, которые могут это вообразить и спокойно ориентироваться в таком мире.

Читайте так же:
10 неожиданных признаков того, что вы очень умны

Для них обычное дело – трехмерный тор. Такой объект можно получить путем дважды повторенного совмещения в одну точку двух, расположенных на противоположных (например, правой и левой, верхней и нижней) гранях куба. Чтобы попытаться представить трехмерный тор с привычных нам позиций, следует провести абсолютно нереальный эксперимент: необходимо выбрать направления, взаимно перпендикулярные, – вверх, влево и вперед – и начать двигаться в любом из них по прямой. Через какое-то (конечное) время с противоположного направления мы вернемся в исходную точку.

Такое геометрическое тело имеет принципиальное значение, если хотеть понять, что такое теорема Пуанкаре. Доказательство Перельмана сводится к обоснованию существования в трехмерном пространстве лишь одного односвязного компактного многообразия – 3-сферы, другие, как 3-тор, неодносвязные.

Долгий путь к истине

Прошло более полувека, прежде чем появилось решение теоремы Пуанкаре для больших чем 3 размерностей. Стивен Смэйл (род. 1930), Джон Роберт Стэллингс (1935-2008), Эрик Кристофер Зиман (род. 1925) нашли решение для n, равного 5, 6 и равного или больше 7. Только в 1982 году Майкл Фридман (род. 1951) был удостоен высшей математической награды – Филдсовской премии – за доказательство теоремы Пуанкаре для более сложного случая: когда n=4.

Кто доказал теорему Пуанкаре

Обыкновенный гений

Григорий Яковлевич родился 13 июня в Ленинграде, в интеллигентной семье. Отец — инженер-электрик — в начале 90-х уехал на ПМЖ в Израиль, мать преподавала математику в ПТУ. Кроме любви к хорошей музыке, она привила сыну увлечение решением задач и головоломок. В 9-м классе Григорий перевелся в физико-математическую школу № 239, но еще с 5-го класса он посещал математический центр при Дворце пионеров. Победы во всесоюзных и международных олимпиадах позволили поступить Перельману в Ленинградский университет без экзаменов.

Многие специалисты, особенно российские, отмечают что Григорий Яковлевич был подготовлен к невиданному взлету высоким классом ленинградской школы геометров, какую он прошел на мехмате Ленинградского госуниверситета и в аспирантуре при Математическом институте им. В.А. Стеклова. Став кандидатом наук, он стал работать в нем.

Теорема Пуанкаре доказательство

Верное направление

Григорий Яковлевич отмечает, что его всегда увлекали сложные проблемы, такие как теорема Пуанкаре. Доказательство Перельман стал искать в направлении, вынесенном из беседы с профессором Колумбийского университета Ричардом Гамильтоном (род. 1943). Во время пребывания в США он специально ездил из другого города на лекции этого неординарного ученого. Перельман отмечает прекрасное доброжелательное отношение профессора к молодому математику из России. В их разговоре Гамильтон упомянул о потоках Риччи – системе дифференциальных уравнений – как способе решения теорем геометризации.

Перельман доказал теорему Пуанкаре

Гамильтон пришел в тупик, когда увидел, что при преобразованиях кривых под действием потоков Риччи образуются сингулярные (обращающиеся в бесконечность) зоны, которые не предусматривала теорема Пуанкаре. Простыми словами, Перельману удалось нейтрализовать образование таких зон, и многообразие благополучно превратилось в сферу.

Потоки Риччи

Односвязное 3-мерное многообразие наделяется геометрией, вводятся метрические элементы с расстоянием и углами. Легче понять это на одномерных многообразиях. Гладкая замкнутая кривая на эвклидовой плоскости наделяется в каждой точке касательным вектором единичной длины. При обходе кривой вектор поворачивается с определенной угловой скоростью, которая определяет кривизну. Где линия изогнута сильнее, кривизна больше. Кривизна положительна, если вектор скорости повернут в сторону внутренней части плоскости, которую делит наша линия, и отрицательна, если повернут вовне. В местах перегиба кривизна равна 0.

Суть теоремы Пуанкаре

Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Его направление внутрь при положительной кривизне и вовне — при отрицательной. Каждую точку заставляем двигаться в направлении и со скоростью, определяемыми соответствующим вектором. Замкнутая кривая, проведенная в любом месте плоскости, при такой эволюции превращается в окружность. Это справедливо для размерности 3, что и требовалось доказать.

Нет пророка…

Он взошел на свой Эверест, каким признается математиками теорема Пуанкаре. Доказательство Перельман выложил в Интернет в виде трех небольших статей. Они немедленно вызвали ажиотаж, хотя русский математик не пошел положенной дорогой – публикация в специализированном журнале в сопровождении профессиональных рецензий. Григорий Яковлевич в течение месяца разъяснял в университетах США суть своего открытия, но число до конца понявших ход его мысли увеличивалось очень медленно.

Лишь через четыре года появилось заключение самых больших авторитетов: доказательства русского математика корректны, первая из проблем тысячелетия решена.

Эпоха соцсетей

Ему пришлось пережить ажиотаж и хамство в соцсетях, молчание тех, кого он уважал, и крики других, учивших его жизни. Энергичные китайцы сначала оценили его вклад в решение проблемы в 25 %, себе и другим насчитав 80! Потом вроде бы пришло мировое признание, но выдержать такое дано не каждому.

голоса
Рейтинг статьи
Ссылка на основную публикацию