100kitov.ru

Интересные факты — события, биографии людей, психология
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большое Красное Пятно на Юпитере – описание, фото и видео

Большое Красное Пятно на Юпитере – описание, фото и видео

Красное пятно на Юпитере

Солнечная система

Юпитер — самая большая планета Солнечной системы. Ее окружность по экватору около 445600 километров. Этот холодный мир окутан толстыми облаками из аммиака и воды. Облака прячут под собой атмосферу из почти чистого водорода. Поверхность Юпитера состоит из жидкого водорода.

Описание

Ниже экватора на облаках Юпитера есть Большое Красное Пятно. Нет, это не корь. Красное Пятно — чудовищной силы буря, бушующая на территории длиной около 50000 километров. Этой площади хватило бы на то, чтобы поглотить весь земной шар. Как области земных ураганов (только намного меньших масштабов), овальная буря на Юпитере бешено вращается – торнадо.

Сравнение размеров Большого Красного Пятна на Юпитере и Земли

Сравнение размеров Большого Красного Пятна на Юпитере и Земли

Для того чтобы совершить полный оборот, этому атмосферному возмущению требуется около шести земных суток, настолько оно велико (по нашим земным меркам, разумеется). Буря продолжается уже многие столетия и имеет долгую историю. Английский ученый Роберт Хук обнаружил это пятно в свой телескоп в 1664 году. Этот ураган был назван Большим Красным Пятном, и продолжается он до сих пор, вот уже больше 300 лет.

При повороте пятна против часовой стрелки сумасшедшие ветры дуют сверху вниз со скоростью около 500 километров в час.

Почему же Красное Пятно на Юпитере сохраняется так долго?

Чтобы ответить на этот вопрос, Филипп Маркус, ученый из Калифорнийского университета в Беркли, создал компьютерную модель Красного Пятна. Результаты оказались настолько интересными, что другие исследователи решили испытать модель в своих лабораториях. Как можно смоделировать ураган в помещении? Специалисты из Техасского университета в Остине использовали для этого сосуд с водой, который вращался, как вращается Юпитер.

Большое Красное Пятно (снимок «Вояджера-1»)

Большое Красное Пятно (снимок «Вояджера-1»)

Тепло, поднимающееся из недр Юпитера, формирует на поверхности завихрения и токи облаков кремового, желтоватого и оранжевого цветов. Поверхность таких вихревых облаков выглядит, как медленно кипящая в кастрюле вода. Чтобы имитировать эти токи и завихрения, техасские ученые закачивали воду в сосуд и выкачивали ее оттуда. Сосуд одновременно вращали. В воду добавляли красную краску, чтобы лучше видеть, что происходит с частицами бурлящей воды.

Наконец в хаосе начала формироваться некоторая закономерность. На поверхности воды стали образовываться маленькие водовороты. Затем к полному восторгу техасских профессоров водовороты начали сливаться между собой. На поверхности бурлящей воды стало расти большое овальное пятно, крутящееся на поверхности воды.

Цветная анимация передвижения БКП.

Они сделали Большое Красное Пятно в миниатюре! Этот опыт помог понять, каким образом ураган мог образоваться на Юпитере: возможно, он образуется из маленьких ураганов, слившихся воедино. Большое Красное Пятно, чтобы не исчезнуть, постоянно поглощает более мелкие области завихрения атмосферы. Другими словами, пятно выживает за счет поглощения более мелких пятен – ураганов.

Почему пятно на Юпитере красное?

По словам Кларка Чепмена, астронома из Планетарного научного института в Таксоне, штат Аризона, есть предположение, что цвет пятна обусловлен солями фосфора или серы. Но точно этого пока никто не знает.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Почему Большое красное пятно Юпитера никак не умрёт

image

«Увлекаться чтением – это ошибка», – говорит мне за чашечкой кофе в кофейне близ кампуса Филип Маркус, вычислительный физик и профессор департамента машиностроения в Калифорнийском университете в Беркли. «Вы слишком многое узнаёте. Именно так я подсел на динамику жидкостей».

А было это в 1978-м, когда Маркус первый год работал в качестве доктора наук в Корнелле, специализируясь на числовых симуляциях солнечной конвекции при помощи спектральных методов. Но ему хотелось изучать эволюцию космоса и общую теорию относительности; проблема, по его словам, была в том, что люди утверждали, что за всю жизнь так и не увидели результатов работы ОТО. В итоге «это область немножечко затихла, и все специалисты по ОТО расходились в другие области».

Именно в 1978 году Вояджер 1 начал отправлять сделанные с близкого расстояния фотографии Юпитера на Землю. Когда Маркусу нужно было, как он говорит, «расслабиться, сбросить напряжение, и всё такое», он шел в специальную лабораторию, располагавшуюся рядом со зданием астрофизики, и восхищался фотографиями Большого Красного пятна, сделанными с Вояджера. Шторм прошёл уже сотни миллионов миль, по крайней мере, с 1665 года, когда его впервые увидел Роберт Гук. «Я понял, что почти никто из области астрономии не был осведомлён в динамике жидкостей, а я как раз был, – сказал он мне. – И я сказал – ну что же, у меня есть возможность заняться изучением этого вопроса, и она не хуже, чем у других».

Читайте так же:
Самые удивительные растения – список, описание, фото и видео

Так он с тех пор и не останавливался. Сегодня он представляет собой эксперта по самому знаменитому шторму в Солнечной системе. Обладая телосложением маунтинбайкера, он отвечает на мои вопросы, активно двигаясь, и иногда размахивая руками в попытках уточнить свои слова. Он признал, что его энергичность может привести к неуклюжести. «Люди с подозрением относятся ко мне, – говорит он. – Если я вхожу в лабораторию, я тут же что-нибудь разбиваю». К счастью, по его словам, «мне очень повезло дружить с несколькими экспериментаторами».

Что поражает вас в Большом красном пятне?

Несколько вещей. Люди давно думали над тем, почему Большое красное пятно (БКП) живёт так долго? БКП – это шторм, и мы привыкли к земным штормам. Средний ураган живёт максимум пару недель, и механизм его уничтожения совершенно определённый: он либо проходит над холодной водой и теряет энергию, либо проходит над землёй и резко теряет энергию. Торнадо – штука впечатляющая, но она живёт всего несколько часов. Так почему же БКП живёт так долго? Раньше люди говорили: «Это облака, задержавшиеся у вершины горы». Или: «Это айсберг в море водорода». Подобные теории разом закончились в 1979-м, когда Вояджеры 1 и 2 пролетели мимо планеты. Никто тогда не знал, что это вихрь, огромный ураган, на поворот которому требуется шесть дней. США уместились бы в БКП пару сотен раз. Оно на самом деле огромное. Одним из замечательных достижений миссий Вояджер стало то, что они сделали сотни фотографий облаков, составляющих БКП, и мы наконец смогли увидеть, как эта штука крутится, и тогда мы смогли с уверенностью сказать, что это вихрь. До того никто не знал, что оно вертится.

Как появилось БКП?

БКП, вероятно, появилось одним из двух способов. Это мог быть восходящий поток газа, добравшийся до стратосферы и завернувшийся, из-за чего и получился вихрь. Если восходящий поток может добраться до достаточно стабильного слоя атмосферы, он может распространяться горизонтально, а когда такой поток распространяется горизонтально на такой быстро вращающейся системе, как Юпитер, то это распространение приводит к образованию вихря. Другая возможность – струйное течение в атмосфере потеряло стабильность, начались волновые колебания, и когда амплитуда волны увеличилась до определённого предела, она распалась, образовав небольшие вихри, которые затем объединились.

Почему оно появилось на Юпитере, а не где-то ещё?

На Земле, если полетать над океаном, можно практически точно сказать, в каких местах под вами будут острова, поскольку над ними будут висеть облака – топографические особенности часто притягивают к себе облака. Но на Юпитере нет твёрдой поверхности, если только не спуститься до очень мелкого ядра. Это, по сути, шар жидкости. Не существует разницы нагрева между континентами и островами. Ветра не прерываются горными грядами. Всего этого нет, поэтому на нём существует набор очень хорошо организованных струйных течений. А если у вас есть такие течения, то вихри появляются естественным образом. Ветра идут в противоположных направлениях, трутся друг об друга. Это примерно как шарик подшипника, находящийся между двумя стенками, двигающимися в противоположных направлениях. Стенки заставляют шар вращаться, и противоположно движущиеся течения на Юпитере заставляют воздух между ними вращаться. Вихри, образовавшиеся между течениями, сопротивляются всему, что в них врезается. Если я сделают в ванной водоворот и шлёпну по нему, он исчезнет. Если я сделаю симуляцию БКП на Юпитере, расположенного между зональными ветрами, и шлёпну по нему, попытавшись разделить его на две части, оно соберётся снова. Поэтому я представляю себе струйные течения как сады, в которых можно выращивать вихри.

А что физически не даёт БКП распадаться?

Я думаю, что БКП в высоту составляет 50-70 км. В поперечнике у него порядка 26000 км. Получается такой блинчик. Точно так же, как с тюбиком зубной пасты, если я надавлю на блинчик в центре, то с его сторон, а также сверху и снизу что-то будет вылезать. Известно, что в центре БКП высокое давление, но его газы не вылезают по горизонтали со всех сторон из-за силы Кориолиса – они вылезают вертикально сверху и снизу. Так что же мешает газам вылезать сверху и снизу? Мне известен только один способ предотвратить это. Сверху БКП есть плотная холодная крышка атмосферы. Именно эта дополнительная плотность и толкает газы БКП обратно вниз. А под БКП должен быть тёплое плавучее атмосферное дно, мешающее высокому давлению в центре выталкивать газы из БКП вниз. Такой получается баланс.

Читайте так же:
Правила приема обезболивающих средств: познавайте с нами

Можно провести численные и аналитические подсчёты и задуматься: «Хм, интересно, а насколько плотная крышка тут нужна? Какая у дна должна быть плавучесть, чтобы достигался такой баланс?» С ветрами вихря связана кинетическая энергия, а с холодной плотной крышкой сверху и плавучим тёплым дном снизу связана потенциальная энергия. Большинство моих коллег, изучающих БКП, концентрируются на кинетической энергии, но я им говорю: «Не-не, ребятушки, в ней сосредоточено всего 16% энергии». Большая часть энергии БКП – это потенциальная энергия плотной холодной крышки и тёплого плавучего дна. Если вы хотите не спать ночами, думая о том, что же может атаковать БКП, то размышляйте о том, что может атаковать его потенциальную энергию.

image

Почему БКП не распадается от трения?

Наша интуиция говорит нам, что вихри не вечны, что они всегда распадаются из-за какого-нибудь трения. Трение бывает разное, и одной из причин, которая может уничтожить БКП, по мнению людей, будут волны Россби. Волны Россби – один из типов атмосферных волн, существующих по причине того, что атмосфера представляет собой вращающуюся сферическую оболочку, а не вращающуюся плоскость. Они часто встречаются в атмосфере, и передвигаются с небольшой скоростью. Люди думали, что БКП начнёт излучать волны Россби, которые отнимут у него энергию. Когда в атмосфере случаются неожиданные происшествия, например, сталкиваются два вихря, то в результате появляются волны Россби. Но обычно после формирования вихря он заканчивает испускать волны Россби, поэтому не наблюдается никаких свидетельств того, что излучение волн Россби уничтожит БКП, находящееся в квазиравновесном состоянии.

Что ещё может его остановить?

Если начать изучать вопрос того, что может атаковать БКП и уничтожить его, придётся думать не только о влиянии на кинетическую энергию таких факторов, как трение; придётся думать о том, что оказывается более важным – о том, что атакует потенциальную энергию. Существует вполне известная причина возможных утечек потенциальной энергии – она называется «лучистое равновесие». Если бы я смог охладить одну часть земной атмосферы, я бы мог достать секундомер и сказать: «Так, интересно, за какое время этот участок снова нагреется и войдёт в лучистое равновесие с окружающей атмосферой?» Или, если бы я сделал где-нибудь небольшой горячий участок, то я мог бы спросить: «Сколько времени займёт установление равновесия из-за передачи фотонов и всего остального, после чего мой участок потеряет свои температурные отличия?» Из вычислений других учёных известно, что в том месте атмосферы, где находится БКП, холодные или горячие участки исчезают примерно за четыре с половиной года – это время требуется на то, чтобы особо тёплые или холодные участки стали полностью неотличимы от окружения. Так что мы сделали множество численных симуляций, и если ввести эффект потепления или охлаждения в нашу компьютерную модель, то получается, что БКП рассасывается за четыре с половиной года.

А что его подпитывает?

Средняя скорость движения вокруг этого пятна – примерно три сотни километров в час. Струйные течения также двигаются примерно с той же скоростью. Но их вертикальные скорости считаются очень небольшими. Они, скорее всего, составляют порядка сантиметров в час, и поэтому ими обычно пренебрегают. Но на больших участках атмосферы постоянно появляются вертикальные ветра, и поэтому мы думаем, что их нельзя списывать со счетов. Мы думаем, что уничтожить БКП пытается тепло, передающееся в холодную крышку и из тёплого дна, и пытающееся установить лучистое равновесие. Но мы считаем, что БКП удаётся выживать, несмотря на эту лучистую передачу тепла, потому, что его вертикальная скорость весьма мала.

Практически можно считать, что когда ветер опускается, он становится теплее, а когда поднимается, то охлаждается. Тепловое излучение фотонов внутри БКП пытается уравнять температуру его крышки и дна с температурой окружающей атмосферы. Это должно делать холодную плотную крышку теплее, и она в итоге должна исчезнуть, что и уничтожит БКП.

Но в начале рассеивания БКП теряется баланс давлений. Потеря баланса позволяет высокому давлению в центре БКП выталкивать газы вертикально через ослабленную крышку. При поднятии ветер охлаждается, что поставляет крышке новый холодный воздух, в результате она охлаждается и утяжеляется. Примерно такой же процесс происходит и на дне БКП, и он восстанавливает тёплое дно, которое пытается уничтожить тепловое излучение.

Читайте так же:
Самые длинные реки в мире – список, названия, где находятся, длина, фото и видео

Плюс, движущийся вертикально вверх газ, проходящий через исчезающую крышку, выходит наружу БКП и в итоге перестаёт подниматься, и его расплющивает по горизонтали на площади, во много раз превышающей площадь БКП. Затем он прекращает двигаться наружу и идёт вниз. Этот опускающийся газ толкает атомы и молекулы атмосферы, окружающие БКП, вниз, снижая их потенциальную энергию. В результате газ заканчивает своё путешествие, возвращаясь в центр БКП. На пути домой газ собирает потенциальную энергию, освобождённую из атмосферы, окружающей БКП.

Сбор этой энергии уравновешивает потерю БКП энергии через тепловое излучение. В компьютерной симуляции можно измерить направление и мощность всех энергий, идущих внутрь и наружу из БКП, и весь этот энергетический бюджет прекрасно сходится. Существует большая утечка потенциальной энергии в атмосферу, окружающую БКП из-за циркуляции газа, но в этом нет ничего страшного, поскольку Солнце восстанавливает лучистое равновесие в этом месте и даёт дополнительную энергию. Так что в итоге получается, что источником энергии, предотвращающим исчезновение БКП, служит Солнце.

В чём ценность изучения атмосферы далёкой планеты?

Если вы не понимаете, как работает Юпитер в нашей собственной Солнечной системе, как вы сможете понять, как работают юпитеры вокруг других солнц? Сейчас очень модно искать другие юпитеры в других солнечных системах, поскольку нам интересно, существуют ли другие планеты, и может ли на них существовать жизнь. Изучение планет, обращающихся вокруг других солнц, нужно с чего-то начинать, нужно совершать глупые ошибки. Именно так и развивается научная область изысканий.

А теперь – жалоба. НАСА – прекрасная организация, и я благодарен ей за финансирование, выделяемое мне и моим коллегам-теоретикам. Но количество денег, которое мы тратим на оборудование – для того, чтобы отправлять приборы в космос, по сравнению с количеством денег, которое мы тратим на анализ данных, полученных с тех самых приборов, очень несбалансированное. С Вояджеров ещё 31 год назад были получены огромные объёмы данных, и их до сих пор не обработали. Получить финансирование на их обработку крайне сложно. Обычно все говорят: «Вам надо делать что-то новое и интересное, с новыми данными! Не надо возвращаться в прошлое и возиться со старыми данными!» Но там же есть очень много всего ценного! Но Конгрессу подавай только оборудование.

Все любят оборудование. А что нужно НАСА – это ещё один Карл Саган. У Карла был талант убеждать людей уважать сами наши открытия, а не только машины, благодаря которым эти открытия стали возможными.

Большое красное пятно Юпитера

Гигантской планете — гигантский атмосферный вихрь: пожалуй, самое точное определение «красного пятна» Юпитера. Почему образовался и сколько ещё просуществует красное пятно — об этом сегодня и поговорим

Большое красное пятно представляет собой гигантский вихрь, который бушует в атмосфере Юпитера уже несколько сотен лет. Вихрь настолько огромен, что считается самым крупным атмосферным вихрем в Солнечной системе: если брать его линейные размеры, то внутрь Большого красного пятна Юпитера уместилось бы три такие планеты как Земля.

Сравнение размера Земли и большого красного пятна Юпитера.

Сравнение размера Земли и большого красного пятна Юпитера.

Что представляет собой Большое Красное пятно?

В начале наблюдений Красное пятно имело размеры около 40 тысяч километров в длину и 13 тысяч километров в ширину. C 1930-х годов его размер постоянно уменьшается: в 1979 году он составлял 23 300 км, в 2014 году — 16 500 км. Скорость ветра внутри пятна превышает 500 километров в час.

“Технически”, Красное пятно представляет собой постоянную зону высокого давления, создающую антициклонический шторм: т.е., как и земным антициклоны, вращающийся против часовой стрелки. Шторм совершает полный оборот вокруг планеты за шесть земных дней, причем период вращения пятна за последние несколько десятков лет увеличился, некоторые ученые связывают это с уменьшением площади пятна. Скорость ветра у краев урагана достигает 500 км/ч, тогда как внутри, похоже, все более спокойно.

Считается, что впервые шторм на Юпитере наблюдал Джованни Кассини в 1665 году, однако, так как постоянные записи наблюдений не велись по крайней мере до 1830-го года, вполне возможно, что “старое” и “новое” пятно – явления схожие, но все же разные. В любом случае, Большому Красному пятну на текущий момент времени от 180 до 350 лет. Неплохо для атмосферного явления?

Читайте так же:
Страшный день календаря — рассказываем детально

Впервые большое красное пятно Юпитера было сфотографировано с близкого расстояния космическим аппаратом “Пионер-10” в 1973 году, затем в 1979 фотографирование Юпитера и его атмосферных явлений проводилось аппаратами “Вояджер-1” и “Вояджер-2”. В 1995 году на орбиту Юпитера был выведен космических зонд “Галилео“, а в 2007 году к Юпитеру приблизился аппарат “Новые Горизонты“.

Инфракрасные снимки Красного пятна показали, что температура вихря несколько ниже прилегающих участков и составляет около −160 °C. При этом центральная часть пятна на несколько градусов теплее её периферийных частей. Верхний слой облаков вихря находится примерно на 8 км выше верхней кромки окружающих облаков. Широта, на которой находится пятно, постоянна (22° южной широты), зато его долгота постоянно меняется — с начала XIX века пятно обежало вокруг Юпитера по крайней мере 10 раз.

Анимация составленная из фотографий атмосферы Юпитера дает неплохое представление о движении красного пятна по её поверхности

Чем объясняется размер и долгий срок “жизни” большого красного пятна Юпитера?

Надо отметить, что Большое Красное пятно не единственный долговременный шторм на Юпитере, правда уж точно самый большой. Другие “пятна-ураганы” могут иметь белый, коричневый и красный цвет и существовать десятки лет. Пятна в атмосфере Юпитера зафиксированы как в Южном, так и в Северном полушарии, но устойчивые, существующие длительное время имеются почему-то только в Южном.

Ввиду разницы скоростей течений атмосферы Юпитера иногда происходят “столкновения” ураганов. Одно из них имело место в 1975 году, в результате чего красный цвет большого пятна «поблёк» на несколько лет. По-видимому продолжительное существование пятна связано с тем, что оно никогда не контактирует с твердой поверхностью, как, например, ураганы на Земле, а также с тем, что оно постоянно поддерживается внутренними источниками тепла планеты.

На самом деле, красное пятно Юпитера - не единственный гигантский шторм на этой планете

На самом деле, красное пятно Юпитера – не единственный гигантский шторм на этой планете (слева, чуть ниже экватора). Посмотрите внимательно и без труда найдете белые, коричневые и прочие «пятна» несколько меньшего размера. Всё эо также юпитерианские вихри в атмосфере

Компьютерные модели показывают, что стабильность таких атмосферных явлений на Юпитере — обычное дело, и что более сильные ураганы могут поглощать более слабые. Скорее всего именно с помощью поглощений других ураганов большое красное пятно достигло своего огромного размера.

Непонятно на данный момент, почему вихри Юпитера имеют разный цвет. По одной из гипотез, пока ураган находится на одинаковой высоте с общей поверхностью верхнего края атмосферы, он имеет белый цвет. Но когда его мощность увеличивается, вихрь поднимается несколько выше общего слоя облаков, где ультрафиолетовое излучение Солнца химически изменяет цвет, придавая ему красноту. также, вполне возможно, что такой оттенок вихрю придают соединения фосфора.

Гигантские «пятна-ураганы» присущи не только Юпитеру, но и другим газовым планетам. В частности, известно Большое тёмное пятно на Нептуне.

Что скрывает Большое Красное пятно Юпитера | Видео

Большое красное пятно овальной формы в южном полушарии Юпитера впервые заметили в 60-х гг. XVII в. Честь первого наблюдения оспаривают друг у друга итальянец Джованни Кассини и англичанин Роберт Гук. Позже выражались сомнения, действительно ли красное пятно, о котором сообщали естествоиспытатели семнадцатого столетия, то же самое, которое начали регулярно наблюдать в девятнадцатом. Современные астрономы склонны давать на этот вопрос положительный ответ.

В девятнадцатом веке большое красное пятно на Юпитере превратилось в Большое Красное пятно (БКП). Постоянные его наблюдения ведутся с 1830 г. Поначалу считалось, что это твердое образование, что-то вроде кратера или выхода красноватых пород на поверхность планеты. Потом выяснилось, что у газовых гигантов, по сути, нет поверхности, нет четкой грани между атмосферой и другими оболочками, гидросферой и литосферой. Просто по мере приближения к центру газовая оболочка постепенно уплотняется, переходя в состояние, близкое к жидкости. Есть ли где-то там, на немыслимой глубине, что-то твердое — это загадка, которая давно занимает планетологов и, вероятно, будет занимать еще долго. Недаром астронавты — герои повести Стругацких «Путь на Амалтею» употребляют выражение «падаем в Юпитер». Поскольку на Юпитере нет ни поверхности, ни уровня моря, высоту (глубину?) определяют по росту давления и измеряют не в метрах, а в барах.

nasa, юпитер, большое красное пятно, атмосфера юпитера

Все что мы можем увидеть в телескоп на «поверхности» планеты-гиганта — это воздушные потоки и облака, образования по определению эфемерные, изменчивые. Но Большое Красное пятно существует уже четвертое столетие. Правда, как показали почти 200 лет регулярных наблюдений, оно не столь твердо и незыблемо, как казалось поначалу: медленно перемещается вдоль экватора и постепенно уменьшается в размерах. А размеры эти воистину огромны. Даже сейчас, когда Пятно изрядно съежилось (согласно наблюдениям замечательного русского астронома Аристарха Аполлоновича Белопольского, 100 лет назад оно было больше раза в два), ширина овала равна 1,3 диаметра Земли, а длина близка к длине земного экватора. Во второй половине XX в. стало окончательно ясно — Красное пятно представляет собой гигантский атмосферный вихрь, шторм небывалой силы, который бушует на планете уже сотни лет, притом имеет более-менее постоянную «прописку», перемещаясь по планете со скоростями, которые больше приличествуют геологическим, нежели атмосферным образованиям. Это целый отдельный мир больше земного — мир бешеных скоростей и высоких давлений.

Читайте так же:
Самые опасные дороги мира: список, где находятся, описание, фото и видео

Надо сказать, что полностью уникальным Большое Красное пятно не является. На Юпитере наблюдаются и другие пятна и пятнышки, на прочих газовых гигантах — тоже. Но все они не дотягивают и по размерам и по стабильности до БКП. Так, в 1999–2000 гг. наблюдалось появление нового, пока еще белого пятна. В 2006 г. оно покраснело, а в 2008-м, оказавшись в опасной близости от БКП, было им поглощено.

Газ в вихре вращается против часовой стрелки с периодом оборота около шести земных суток. Скорость ветра внутри Пятна превышает 500 км/ч. Для сравнения — скорость урагана Катрина оценивается в 280 км/ч. Температура Пятна ниже температуры прилегающих участков и составляет около −160 °C. (на прилегающих участках — −145 °C). При этом центральная часть на несколько градусов теплее ее периферийных частей. Верхняя граница красных облаков вихря находится выше среднего уровня «поверхности» Юпитера. Природа их необычной окраски долго была предметом научной дискуссии. Заметили, что цвет образования меняется, может побледнеть или стать более интенсивным. Возникла гипотеза: пока ураган находится на одинаковой высоте с общей поверхностью верхнего края атмосферы, он имеет белый цвет. Но когда его мощность увеличивается, вихрь поднимается несколько выше общего слоя облаков, где ультрафиолетовое излучение Солнца химически изменяет цвет, придавая ему красноту. В августе 2016 г. научное издание Icarus опубликовало работу американских ученых, где было показано, что нужный оттенок получается, когда воздействию ультрафиолетового излучения подвергается смесь аммиака и ацетилена. Мельчайшие кристаллики аммиачного льда — обычный материал верхнего слоя юпитерианских облаков, а вот ацетилен есть далеко не везде. Возможно, смерч выносит его на поверхность из неведомых глубин.

10 июля 2017 г. космический аппарат «Юнона» (см. «НиТ» №5 2018 г.) прошел над Красным пятном Юпитера и сделал снимки, гораздо более подробные, чем те, которые астрономы имели в своем распоряжении до сих пор. Проделав путь около 9 000 км над Пятном, зонд запечатлел его с расстояния 9 866 км. После того как снимки прошли специальную обработку, на них стало отчетливо видно, что ярко-красный овал гигантского смерча прорезают языки облаков более темного оттенка.

Во время пролета работала не только фотокамера, но и другие инструменты «Юноны», в том числе и микроволновой радиометр (MWR). Анализ собранных им данных показал, что Большое Красное пятно велико не только в длину и ширину. Его корни тянутся вглубь атмосферы Юпитера по крайней мере на 350 километров. В глубине температура гораздо выше, чем на поверхности. Где-то в недрах Юпитера скрывается неведомый источник тепла, и этим температурным перепадом, видимо, и объясняется появление смерча.

аппарат юнона, наса, шторм на юпитере, северное полушарие

Летом 2018 г. в «Astronomical Journal» вышла статья, посвященная газовому составу и структуре облаков в Большом Красном пятне. Ученые изучили их на высоте (глубине) 0,5–5 бар. Были проанализированы данные, полученные от спектрометров наземного базирование и тех, что имелись на борту «Галилео» и «Кассини». Главной новостью стало обнаружение на глубине в 5 бар непрозрачного облачного слоя, в составе которого, по всей вероятности, преобладает вода. Выше водяного облака, на высоте около 570 миллибар, обнаружилось облако аммиака. На глубине, соответствующей давлению больше 1,3 бар, располагается облако гидросульфида аммония. Руководитель исследования Гордон Бьоракер (Gordon Bjoraker) из Центра космических полетов имени Годдарда надеется, что более тщательный анализ данных, собранных «Юноной», позволит эту информацию уточнить и выявит закономерности, которые можно будет применять при моделировании процессов и на других газовых гигантах.

голоса
Рейтинг статьи
Ссылка на основную публикацию